Digital Electronics \& Computer Engineering (E85)

Harris \& Brake

Spring 2020

Final Exam

This is a closed-book take-home exam. Electronic devices including calculators are not allowed. You are permitted one side of two 8.5×11 " sheets of paper with notes.
You are bound by the HMC Honor Code while taking this exam.
There is no time limit for this exam. You do not need to work on the exam in one contiguous block of time. However, you should record each of your start and stop times and the total time spent on the exam in the table below.

Return the exam as a single scanned or digitally filled PDF uploaded to Sakai no later than $\mathbf{1 2} \mathbf{~ p m}$ on May $\mathbf{1 4}^{\text {th }} \mathbf{, 2 0 2 0}$. If you scan your exam, please ensure that your answers are legible. If possible, we encourage you to use a scanner or a smartphone scanning app with the flash enabled.

Alongside each question, the number of points is written in brackets. All work and answers should be written directly on this exam. Insert additional pages of work in your PDF submission as necessary. The work for each problem should appear with its respective problem, not at the end of your PDF. Show your work for partial credit.
Name:

Page	Score	Total Available
2		$\mathbf{3}$
3		$\mathbf{4}$
4		$\mathbf{3}$
5		$\mathbf{4}$
6		$\mathbf{6}$
7		$\mathbf{5}$
8		$\mathbf{3}$
9		$\mathbf{6}$
10		$\mathbf{4}$
11		$\mathbf{7}$
Total		$\mathbf{4 5}$

Date	Start Time	Stop Time

Total Time: \qquad hrs

Consider the following finite state machine.

[3] Sketch a state transition diagram for the FSM.

Assume the following component delays and ignore timing issues related to P and W to answer the following questions. The FSM schematic is repeated here for your convenience.

Cell	Propagation Delay (ps)	Contamination Delay (ps)	Setup Time (ps)	Hold Time (ps)
2-input gate	20	10		
Flip-flop	40	25	30	17

[2] If the clock skew is 15 ps , what is the minimum clock period for which the system will work reliably?
[2] How much clock skew may the system experience before it becomes unreliable at low frequencies?

[3] Write a simplified behavioral Verilog description of the FSM (repeated here for your convenience).

```
module fsm(input logic clk, reset,
    input logic P,
    output logic W);
```

endmodule
[4] Design a 2048×8 Read Only Memory (ROM) with input terminals A[10:0] and output terminals RD [7:0] using 256×32 ROMs (input terminals $\mathrm{A}[7: 0]$ and output terminals RD [31:0]) and N -bit 2:1 multiplexers. Draw a schematic of your design. Use no more hardware than necessary. Blocks for your design are shown below.

(a) N-bit, 2:1 multiplexer

(b) $256 \times 32 \mathrm{ROM}$

Block diagram elements

What is the minimum number of logic elements required to build each of the following circuits on the Cyclone IV FPGA that we used in lab and class? A block diagram of a single logic element is attached at the end of the exam for your reference.

```
module mux2(input logic [31:0] d0, d1, ELEMENTS: ____ [2]
    input logic s,
    output logic [31:0] y);
    assign y = s ? dO : d1;
endmodule
```

```
module gates(input logic a, b, c, d,
```

module gates(input logic a, b, c, d,
output logic y);
output logic y);
assign y = ((a \& b) ^ (c | d)) \& ~b;
assign y = ((a \& b) ^ (c | d)) \& ~b;
endmodule

```
endmodule
```

```
module fsm(input logic clk, reset, ELEMENTS: _
                input logic a,
                output logic [1:0] q);
    logic [1:0] nextq;
    always_ff @(posedge clk, posedge reset)
        if (reset) q <= 2'b00;
        else q <= nextq;
    always_comb
    case(q)
        2'b00: if (a) nextq <= 2'b01;
            else nextq <= 2'b00;
        2'b01: if (a) nextq <= 2'b10;
            else nextq <= 2'b01;
        2'b10: if (a) nextq <= 2'b11;
            else nextq <= 2'b10;
        2'b11: if (a) nextq <= 2'b11;
            else nextq <= 2'b00;
    endcase
endmodule
```

[2] Express the IEEE 754 floating point number C1BE0000 in base 10.
[3] Assume the array c is initialized at a base memory address of $0 \times 2000 _0000$ and is running on a 32-bit architecture to answer the following questions.
(a) What is the value of carSize?
(b) What is the value of y ?

```
typedef struct car {
    char make[56];
    char model[16];
    unsigned int year;
    unsigned long num_seats;
} car;
car myCar;
unsigned long carSize = sizeof(myCar);
car c[10];
unsigned long *y = &c[5].year;
```

[3] Translate the following RISC-V instruction from machine code to its corresponding assembly instruction. You may refer to registers by index rather than by name (e.g., x 9 instead of $s 1$). Selected tables from Appendix B are attached to the end of this exam for your reference.
[6] Write RISC-V assembly code to implement the following function, which performs matrixvector multiplication. The code snippet computes the product of a 3×3 matrix A and a 3×1 vector x . The result is stored in a 3×1 vector y .

Use $s 0$ for i, $s 1$ for j, and $s 2$ for temp. The base address of A is stored in $s 3$, the base address of x is stored in $s 4$, and the base address of y is stored in $s 5$.

```
int A[3][3];
int x[3];
int y[3];
int i, j, temp;
for(i = 0; i < 3; i++)
{
    temp = 0;
    for(j = 0; j < 3; j++)
    {
        temp += A[i][j]*x[j];
    }
    y[i] = temp;
}
```

Consider the 5 -stage pipelined RISC-V processor with hazard unit from Chapter 7 running the following program. The first addi instruction is issued on cycle 1.

```
    addi t0, zero, 42
    addi t1, zero, 12
    and t2, t0, t1
    lw t4, 0(t1)
    add t5, t4, t4
    beq ZERO, ZERO, else
if: or t3, t0, t1
    sub t3, t3, t0
    beq zero, zero, done
else: sw t2, 0(t1)
done:
```

[1] On which cycle is $t 2$ written?
[1] What value is written to $t 2$?
[1] On which cycle is $t 5$ written?
[1] On which cycle is MemWrite asserted?

Consider modifying the single-cycle RISC-V processor to support the lhu (load halfword unsigned) instruction. lhu rd, imm (rs1) reads a 16-bit half-word from memory address $(r s 1+i \mathrm{~mm})$ and places it in the bottom 16 bits of register $r d$. The upper 16 bits of register $r d$ are filled with zeros. The address must be even. 1 hu has $o p=3$ and funct $3=5$. In comparison, 1 w also has $\mathrm{op}=3$ but funct $3=2$. A table of the instruction formats is included in the material attached to the end of the exam for your reference.

Recall that our memory reads out a 32-bit word on RD from the address specified by $\mathrm{A}[31: 2]$.
[2] Write 1 hu $x 5,28(x 3)$ in machine language. Express your answer in hexadecimal.
[5] Modify the attached single-cycle processor datapath and controller to support 1hu. Feel free to add new hardware blocks, but keep your design as simple as possible.

Single Cycle Processor

Single Cycle Controller

Main Decoder truth table

Instruction	Opcode	RegWrite	ImmSrc	ALUSrc	MemWrite	ResultSrc	Branch	ALUOp	Jump
lw	0000011	1	00	1	0	01	0	00	0
sw	0100011	0	01	1	1	xx	0	00	0
R-type	0110011	1	xx	0	0	00	0	10	0
beq	1100011	0	10	0	0	xx	1	01	0
addi	0010011	1	00	0	0	00	0	10	0
jal	1101111	1	11	x	0	10	0	xx	1

ALU Decoder truth table

ALUOp	funct3	$\mathbf{o p}_{5}$, funct75	ALUControl	Instruction
00	xxx	xx	010 (add)	lw, sw
01	xxx	xx	110 (subtract)	beq
10	000	$00,01,10$	010 (add)	add
10	000	11	110 (subtract)	sub
10	010	xx	111 (set less than)	slt
10	110	xx	001 (or)	or
10	111	xx	000 (and)	and

ImmSrc encoding

ImmSrc	ImmExt	Type	Description
00	$\{\{20\{$ Instr $[31]\}\}$, Instr $[31: 20]\}$	I	12-bit signed immediate
01	$\{\{20\{$ Instr $[31]\}\}$, Instr $[31: 25]$, Instr $[11: 7]\}$	S	12-bit signed immediate
10	$\{\{20\{$ Instr $[31]\}\}$, Instr $[7]$, Instr $[30: 25]$, Instr $[11: 8], 1 ’ \mathrm{~b} 0\}$	B	13-bit signed immediate
11	$\{\{12\{$ Instr $[31]\}\}$, Instr $[19: 12]$, Instr $[20]$, Instr $[30: 21], 1 ’ \mathrm{~b} 0\}$	J	21-bit signed immediate

Immediate encodings

Type	Bits Encoded	Immediate	Field Width
I	imm $_{11: 0}$	$\left\{20\left\{\right.\right.$ imm $\left._{11}\right\}$, imm $\left._{11: 0}\right\}$	12 bits
S	imm $_{11: 0}$	$\left\{20\left\{\right.\right.$ imm $\left._{11}\right\}$, imm $\left._{11: 0}\right\}$	12 bits
B	imm $_{12: 1}$	$\left\{19\left\{\right.\right.$ imm $\left._{12}\right\}$, imm $\left._{12: 0}, 1^{\prime} \mathrm{b} 0\right\}$	12 bits
J	imm $_{20: 1}$	$\left\{11\left\{\operatorname{imm}_{20}\right\}\right.$, imm $\left._{20: 1}, 1^{\prime} \mathrm{b} 0\right\}$	20 bits
U	imm $_{31: 12}$	$\left\{\right.$ imm $\left._{31: 12,12}{ }^{\prime} \mathrm{b} 0\right\}$	20 bits
R	rs $24: 0$	shamt $4: 0$	5 bits

RISC-V instruction formats

7 bits	5 bits	5 bits	3 bits	5 bits	7 bits	
funct7	rs2	rs1	funct3	rd	op	R-Type
$\mathrm{imm}_{11: 0}$		rs1	funct3	rd	op	I-Type
$\mathrm{imm}_{11: 5}$	rs2	rs1	funct3	$\mathrm{imm}_{4: 0}$	op	S-Type
imm ${ }_{12,10: 5}$	rs2	rs1	funct3	$\mathrm{imm}_{4: 1,11}$	op	B-Type
$\mathrm{imm}_{31: 12}$				rd	op	U-Type
$\mathrm{imm}_{20,10: 1,11,19: 12}$				rd	op	J-Tуре
20 bits				5 bits	bits	

RV32I instructions - sorted by opcode, then funct3

Op			Type	Instruction			Description	Operation
3	0	-	I	1b	rd,	imm(rs1)	load byte	rd $=$ SignExt ([Address $]_{7: 0}$)
3	1	-	I	1h	rd,	imm(rs1)	load half	rd $=$ SignExt ([Address] ${ }_{15: 0}$)
3	2	-	I	lw	rd,	imm(rs1)	load word	rd $=$ [Address]
3	4	-	I	lbu	rd,	imm(rs1)	load byte unsigned	rd = ZeroExt ([Address $]_{7: 0}$)
3	5	-	I	1hu	rd,	imm(rs1)	load half unsigned	rd = ZeroExt ([Address] ${ }_{\text {15:0 }}$)
19	0	-	I	addi	rd,	rs1, imm	add immediate	rd = rs1 + SignExt (imm)
19	1	0	R	slli	rd,	rs1, shamt	shift left logical immediate	rd $=$ rs1 << shamt
19	2	-	I	slti	rd,	rs1, imm	set less than immediate	rd $=($ rsi < SignExt (imm) $)$
19	3	-	I	sltiu	rd,	rs1, imm	set less than immediate unsigned	rd $=(\mathrm{rs1}$ < SignExt(imm))
19	4	-	I	xori	rd,	rs1, imm	xor immediate	rd = rs1 ^ SignExt (imm)
19	5	0	R	srli	rd,	rs1, shamt	shift right logical immediate	rd = rs1 >> shamt
19	5	32	R	srai	rd,	rs1, shamt	shift right arithmetic immediate	rd $=$ rs1 >>> shamt
19	6	-	I	ori	rd,	rs1, imm	or immediate	rd = rs1 \| SignExt(imm)
19	7	-	I	andi	rd,	rs1, imm	and immediate	rd = rs1 \& SignExt(imm)
23	-	-	U	auipc	rd,	imm	add upper immediate to PC	$\mathrm{rd}=\left\{\mathrm{imm}_{31: 12}, 12^{\prime} \mathrm{b} 0\right\}+\mathrm{PC}$
35	0	-	S	sb	rs2,	imm(rs1)	store byte	$\left[^{\text {Address }}\right]_{7: 0}=r s 2_{7: 0}$
35	1	-	S	sh	rs2,	imm(rs1)	store half	[Address] 15:0 $=$ rs2 15:0 $^{\text {a }}$
35	2	-	S	sw	rs2,	imm(rs1)	store word	[Address] = rs2
51	0	0	R	add	rd,	rs1, rs2	add	rd = rs1 + rs2
51	0	32	R	sub	rd,	rs1, rs2	sub	rd = rs1 - rs2
51	1	0	R	sll	rd,	rs1, rs2	shift left logical	$\mathrm{rd}=\mathrm{rs1}$ << rs24:0
51	2	0	R	slt	rd,	rs1, rs2	set less than	$r d=(r s 1<r s 2)$
51	3	0	R	sltu	rd,	rs1, rs2	set less than unsigned	$r d=(r s 1<r s 2)$
51	4	0	R	xor	rd,	rs1, rs2	xor	$\mathrm{rd}=\mathrm{rs1}$ ^ rs2
51	5	0	R	srl	rd,	rs1, rs2	shift right logical	rd = rs1 >> rs2
51	5	32	R	sra	rd,	rs1, rs2	shift right arithmetic	rd = rs1 >>> rs2
51	6	0	R	or	rd,	rs1, rs2	or	rd = rs1 \| rs2
51	7	0	R	and	rd,	rs1, rs2	and	rd = rs1 \& rs2
55	-	-	U	lui	rd,	imm	load upper immediate	$\mathrm{rd}=\left\{\mathrm{imm}_{31: 12}, 12^{\prime} \mathrm{b} 0\right\}$
99	0	-	B	beq	rs1,	rs2, label	branch if =	if (rs1==rs2) PC = BTA
99	1	-	B	bne	rs1,	rs2, label	branch if ! =	if (rs1!=rs2) PC = BTA
99	4	-	B	blt	rs1,	rs2, label	branch if <	if (rs1< rs2) PC = BTA
99	5	-	B	bge	rs1,	rs2, label	branch if \geq	if (rs1>=rs2) PC = BTA
99	6	-	B	bltu	rs1,	rs2, label	branch if $<$ unsigned	if (rs1< rs2) PC = BTA
99	7	-	B	bgeu	rsi,	rs2, label	branch if \geq unsigned	if (rs1>=rs2) PC = BTA
103	0	-	I	jalr	rd,	rs1, imm	jump and link register	rd $=$ PC + 4, $\mathrm{PC}=\mathrm{rs} 1+$ SignExt (imm)
111	-	-	J	jal	rd,	label	jump and link	rd $=$ PC + 4, PC = JTA

RISC-V multiply and divide instructions (RVM extension)

0p	13	$f 7$	Type	Instruction		Description	Operation
51	0	1	R	mul	rd, rs1, rs2	multiply	$\mathrm{rd}=\{\mathrm{rs1} \mathrm{x} \text { rs2 }\}_{31: 0}$
51	1	1	R	mulh	rd, rs1, rs2	multiply high (signed signed)	$r d=\{r s 1 \times \mathrm{rs2}\}_{63: 32}$
51	2	1	R	mulhsu	rd, rs1, rs2	multiply high signed unsigned	$r d=\{r s 1 \times r s 2\}_{63: 32}$
51	3	1	R	mulhu	rd, rs1, rs2	multiply high unsigned	$r d=\{r s 1 \times \mathrm{rs2}\}_{63: 32}$
51	4	1	R	div	rd, rs1, rs2	divide (signed)	$\mathrm{rd}=\mathrm{rs1} / \mathrm{rs2}$
51	5	1	R	divu	rd, rs1, rs2	divide unsigned	$\mathrm{rd}=\mathrm{rs} 1 / \mathrm{rs} 2$
51	6	1	R	rem	rd, rs1, rs2	remainder (signed)	$r d=r s 1 \% \mathrm{rs2}$
51	7	1	R	remu	rd, rs1, rs2	remainder unsigned	$r d=r s 1 \% r s 2$

Diagram of a single Logic Element (LE) in a Cyclone IV FPGA

Figure 2-1. Cyclone IV Device LEs

