Digital Electronics & Computer Engineering (E8S)
Harris Fall 2019

Final Exam

This is a closed-book take-home exam. Electronic devices including calculators are not
allowed, except on the computer question on the last page. You are permitted two 8.5x11”
sheets of paper with notes.

You are bound by the HMC Honor Code while taking this exam.

The first part of the exam is written, while the final page is done on the computer based on
your E85 Lab 11. The entire Lab 11 that you use (including datapath and controller) must
be your own work; it cannot, for example, include somebody else’s controller. The exam
is intended to be doable in 3 hours if you have prepared adequately. However, there will
be no limit on the time you are allowed except that the written portion must be completed
in one contiguous block of time and the computer part must be completed in another
contiguous block of time. A contiguous block of time is a period of time working at a desk
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85
resources between the two blocks of time. Please manage your time wisely and do not let
the exam expand to take more time than is justified.

Return the exam to the E85 box in the Engineering Department Office no later than
Wednesday 12/18 at noon.

Alongside each question, the number of points is written in brackets. All work and answers
should be written directly on this examination booklet, except for printouts. Use the backs
of pages if necessary. Write neatly; illegible answers will be marked wrong. Show your
work for partial credit.

Name:

Do Not Write Below This Point

Page 2: /4
Page 3: /4
Page 4: /17
Page 5: /3
Page 6: /5
Page 7: /5
Page 9: /4
Page 10: /4
Page 11: /8
Page 16: /6
Total: /50

Page 1 of 16




[4] Interpret A = 0x40D40000 and B = 0xCOC80000 as IEEE single-precision floating
point numbers. Compute their sum C = A + B, and write the result as a floating-point
number in hexadecimal.

Decimal Value of A:

Decimal Value of B:

Decimal Value of C:

Hexadecimal Representation of C:

Page 2 of 16



An AND-OR-INVERT-22 (AOI22) gate computes Y =~(AB + CD). The symbol is shown
below. An AOI22 is considered one compound gate, not three individual gates.

BDM

[2] Using only an AOI22 gate and inverters, sketch a schematic for a 2:1 multiplexer. Let
your inputs be S, D0, and D1, and your output be Y.

oOw>X

[2] Is it possible to perform any arbitrary function of 2 variables using a single AOI22 gate
and as many inverters as you want? Explain why, or give a counterexample.

YES / NO

(explanation / counterexample)

Page 3 of 16



Consider the circuit below. Notice that the circuit uses an AOI22 gate defined in the
previous problem.

clk

—] M s )

reset

[4] Draw a state transition diagram for the circuit.

[3] Suppose the inputs below are applied. Sketch the behavior of the states and outputs.

ok [ L LI L[ LT 1_J 1

resel I
A |

G | |
S1

S0

Page 4 of 16



[3] Write Behavioral Verilog code for the circuit based on your state transition diagram.

module final (input logic clk, reset,
input logic a, b,

output logic x, Vy);

endmodule

Page 5 of 16



Consider the same circuit, repeated here for your convenience.

Ik

reset

[

[2] How many logic elements are required to build this circuit on our Spartan FPGA?

Logic Elements

[3] Suppose that each input or clock pin of each gate or register has 3 fF of capacitance.
(Note that the AOI22 has 4 input pins.) The X and Y outputs each drive 10 fF of
capacitance. Suppose that the data signals have an average activity factor a of 0.1, and
reset has an activity factor of approximately 0. The power supply voltage is V2 V, and the
circuit operates at | GHz. Compute the power consumption of the circuit.

Power (Watts)

Page 6 of 16



[5] Write an assembly language function to compare two strings. The answer should be 1
if the first string comes earlier in alphabetical (ASCII) order than the second, -1 if the first
string comes later than the second, and 0 if the strings are identical. When the function is
called, RO and R1 contain the base address of two null-termianted strings. Return your
result in RO. Hint: MVN RO, #0 puts -1 in RO.

Use ASCII order for comparison of nonalphabetic characters. For example,

strcmp ("Alicia", "Ben") =1

strcmp ("MIT", "HMC") = -1

strcmp ("Finals", "Finals") = 0

strcmp ("E85A", "E85") = -1

strcmp ("cash™, "ca$h") = -1 because the ASCII value for s is 115 and for $ is 36.

Page 7 of 16



[4] Refer to the memory maps below using the 12C1 Inter-integrated circuit port. Write a C function to set
the 10-bit Own Address field (OA1) of the I2C_OARI1 to 0x047 and then wait until the Receive Not Empty
(RXNE) field of the I12_ISR is true. Don’t rely on any libraries; define the register addresses yourself.

Table 101. 12C register map and reset values

Offset| Register |5|QIQRJNIQILQIITIQYTIQSZR=|CLIIRVNE 2| o|o|~o|v/t|m|cN|~|o
Zﬁﬁﬁzzé 88 | w| | w] w)w
12C_CR1 BElozut e |9 onvpog Z858EEYw
ow e eSS Ea ba 5 el e glaee Y
0x0 &2,%(%038 éﬁ Z w nl 2| <
z
Reset value ojofojo|o|ofo|ofo|oO oooo’ooooooooo
£ % 2 xla| b Eog
12C_CR2 ml ol 9 NBYTES[7:0] Qo< a9 §| SADDI9:0]
0x4 2l 5 % Zl o b &l 2 o
ol < T o
Reset value olojofojo|ofo|o|o|ofo|o|ofo|0|0|0O o‘o’o‘o‘o‘o‘o‘o‘o‘o
w
Z 5
12C_OAR1 E s OA1[9:0]
0x8 IS) b
o
Reset value 0 00‘0 0‘0‘0‘0‘0‘0‘00
z
i OA2MS
12C_OAR?2 N ; OA2[7:1]
0xC g K [2:0]
Reset value 0 0‘0‘0 0’0‘0’0‘0‘0‘0
[2C_TIMINGR | PRESC[3:0] SC'—D]E"[&O SDABE'—[& SCLH[7:0] SCLL[7:0]
0x10
Resetvalue [0[0{0|0 o‘o‘o‘o o‘o‘o‘ooo‘ooo‘o‘o’o o‘o‘o‘o‘o‘o‘o‘o
z
12C i E 4
— £ TIMEOUTB[11:0] 2 TIMEOUTA[11:0]
ox14 TIMEOUTR E % e
=
Resetvalue |0 ooooo‘o‘o‘o‘o‘o‘ooo olo|jofojofofo|o|o|o|0|O|O
Elx
> =4 ol x Lo w
) x oW e %ol Soz 2y
ot 12C_ISR ADDCODEJ6:0] 5 2 ;IJ ugJ @ 3 E i S e g g RS X
(=
Reset value o‘o|o‘o|o‘o|ooo olojo|ojofojo|o|o|o|o|0|O]1
Table 1. STM32F0xx peripheral register boundary addresses (continued)
Bus Boundary address Size Peripheral Peripheral register map
0x4000 7C00 - 0x4000 7FFF |1 KB Reserved
0x4000 7800 - 0x4000 7BFF |1 KB CEC Section 31.7.7 on page 910
0x4000 7400 - 0x4000 77FF |1 KB DAC Section 14.10.15 on page 291
0x4000 7000 - 0x4000 73FF |1 KB PWR Section 5.4.3 on page 92
0x4000 6C00 - 0x4000 6FFF |1 KB CRS Section 7.6.5 on page 147
0x4000 6800 - 0x4000 6BFF |1 KB Reserved
0x4000 6400 - 0x4000 67FF |1 KB CAN Section 29.9.5 on page 854
0x4000 6000 - 0x4000 63FF |1 KB USB/CAN SRAM Section 30.6.3 on page 890
0x4000 5C00 - 0x4000 5FFF |1 KB uUsSB Section 30.6.3 on page 890
0x4000 5800 - 0x4000 5BFF |1 KB 12C2 Section 26.7.12 on page 685
0x4000 5400 - 0x4000 57FF |1 KB 12C1 Section 26.7.12 on page 685

Page 8 of 16

(put solution on next page)



vold 12c twiddling(void) {

Page 9 of 16



Consider the following program. Initially, suppose RS contains the value 0x0400 and
memory location 0x420 contains the value 17.

LDR R6, [R5, #0x20]
ADD R7, R6, #1
SUBS R1, R5, #42
BNE AROUND

SUB R8, R5, #30
ADD R8, R8, R7

STR R8, [R5, #0x24]
AROUND

STR R7, [R5, #0x28]

The program is executed on our pipelined processor with the same hazard handling you
considered in class and Problem Set 10. The behavior of the pipeline for the first instruction
is illustrated below. For example, in cycle 2, the value 0x0400 is read from the first port
of the register file.

1 2 3 4 5 6 7 8 9 10 11 12

Tire (cycles)

[1] What value is written to the register file on cycle 5?

[1] What does the ALU do on cycle 6?

[1] In which cycle is the memory written?

[1] Which memory address is written?
Page 10 of 16



The ARM LDR Rd, [Rn, imm]'! is like an ordinary LDR but also updates the base
address Rn = Rn + imm. This is called a pre-indexed load. For example, if R1 is initially
0x1000, and memory location 0x1008 contains 42, then LDR R2, [R1, #8] puts42in
R2 and 0x1008 in R1. In ARM machine language, the W bit of the function field is 1 for
pre-indexed loads and O for ordinary loads. Note that Ibar =0,P=1,U=1,B=0,and L
= 1 for both kinds of loads. Modify the ARM multicycle processor to support the
preindexed load instruction, using as little additional hardware as feasible.

[3] Mark up the attached multicycle processor diagram and ALU to handle the new
instructions.

[2] Mark up the attached multicycle controller (including state transition diagram and truth
tables) to handle the new instructions.

[2] The attached multicycle memfile.s test code has highlighted modifications to test the
new instruction. As compared to the memfile.s from Lab 11, it replaces the LDR
instruction at 0x4C with an a pre-indexed load.

Translate the pre-indexed command to machine language. Express your code in
hexadecimal. The format for a memory instruction is given below. The cond field for
ALWAYS is 1110. Hint: 23110 = E716.

Memory _ Immediate 110
3128 27:26 25:20 19:16 15:12 11:0 = O/| imm12 ‘
[ cond [9Pi]PlulBW || Rn | R | Src2 | i es s
W T:N|shamt5 |sh|1| Rm ‘

Register

LDR R3, [R2, #231]!

[1] Predict what value should be written to mem[248] at the last line of the program.

Predicted Value:

Page 11 of 16



Multicycle Processor

CLK
PCWrite
AdrSIc |control
MemWrite| Unit
IRWrite ResultSrc
3128 Cond ALUControl
2726 op ALUSrcB
2520 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite
Flags
|>; ALUFlags
g CLK |
CLK CLK
CLK \ CLK 1% )
WE 19:16 o WE3
rc [Mecl g N RD [ instr [ RAY A7 RD1 [ 1A
EN 1I——r A EN, I h2 ALUOU !
Instr / Data A2 RD2 [~ 01
Memory § 15112 A3 s 10
WD (=X g @
I~ — wD3 File g
al — Ri5 B
CLK
230 Extend Extimm
Data
Result
Figure 7.30 Complete multicycle processor
A B
A31 N N
By
ALUControk, Sumg, ALUControl,
NIIPN S
>
; ; ~
c
Cout 9
=1
X
| | Sum S
N N N N
11 10 01 00
5—— ALUControl
Results; N
NZCV
4
Vi C: N Z Result ALUFlags

Page 12 of 16



Multicycle Controller

CLK
Condy,,
ALUFlags.,, 9
(— )Flagw,, ;‘,
5
PCsS 3_, PCWrite
NetPC |
Op1y — RegW B RegWrite
Functyy —p MemW
R eeoder IRWrite
0 AdrSrc
ResultSrc, ,
ALUSTcA
ALUSICB
ImmSrc,,,
RegSrc,.,
ALUControl,
(a) Control Unit \_ J
e S
| || |
| Rd,, PCS | NextPC |
H | pcs :}LZ} cowie |
: ! RegW ———————————") RegWwrite :
] RegW MemW 1 O—— Memwrite |
| Memw FlagW,,, |
i e Cae i
| NextPC ° |
| AdrSrc 1 3 |
| Opyyg ResultSre.q| Multiplexer 1 T |
| ALUSrcA | Selects | ( |
| ALUSToB, 1 Condso —— |
| (] |
| Functy, 1 =1 o é’ |
l (] 3| 8% !
| ALUControl, , | | ALUFlagsse S H !
| FlagW, [N ] |
1 1 Flags:.o |
] Instr ImmSre ] ]
————————————————— — — - ——————————————— — —— -
(b) Decoder (c) Conditional Logic
Figure 7.31 Multicycle control unit
S0: Fetcl
Reset AdrSrc =0 S1: Decode
AluSrcA = 1 ALUSrcA =1
ALUSrcB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0
ResultSrc = 10 ResultSrc = 10
IRWrite
NextPC Data | Branch
ata Imm -
Memor Op =10
y Op=00
Op =01 Functs = 1

S$2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

LDR
Functy =1

S3: MemRead
ResultSrc = 00

AdrSrc =1

S4: MemWB

S6: ExecuteR
ALUSrcA=0
ALUSrcB = 00
ALUOp =1

S7: Executel
ALUSrcA =0
ALUSIrcB = 01
ALUOp =1

STR
Functo =0

S5: MemWrite
ResultSrc = 00
AdrSrc =1

MemW

S8: ALUWB
ResultSrc = 00
RegW

S9: Branch
ALUSrcA =0
ALUSIrcB = 01

ALUOp =0
ResultSrc = 10

Branch

ResultSrc = 01
RegW

Page 13 of 16




Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction (0/% Functs Functy RegSrc; RegSrcy ImmSrcyy
LDR 01 X 1 X 0 01
STR 01 X 0 1 0 01
DP immediate 00 1 X X 0 00
DP register 00 X 0 0 00
B 10 X X X 1 10

Functyq Funct,
ALUOp (cmd) (S) Type  ALUControl;.

0 X X Not DP 00 (Add) 00
1 0100 0 ADD 00 (Add) 00
1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

; memfile.dat

MAIN
SUB RO, R15, RI15 ; RO =0 1110 000 0010 O 1111 0000 0000 0000 1111 EO4F0O00F 0x00
ADD R2, RO, #5 ; R2 =5 1110 001 0100 O 0000 0010 0000 0000 0101 E2802005 0x04
ADD R3, RO, #12 ; R3 =12 1110 001 0100 O 0000 0011 0000 0000 1100 E280300C 0x08
SUB R7, R3, #9 ; R7 =3 1110 001 0010 O 0011 0111 0000 0000 1001 E2437009 0xOc
ORR R4, R7, R2 ; R& = 3 ORS5 =7 1110 000 1100 O 0111 0100 0000 0000 0010 E1874002 0x10
AND R5, R3, R4 ; R5 = 12 AND 7 = 4 1110 000 0000 O 0011 0101 0000 0000 0100 E0035004 0x14
ADD R5, R5, R4 ; RS =4+ 7 =11 1110 000 0100 O 0101 0101 0000 0000 0100 E0855004 0x18
SUBS R5, R5, #10 ; R5 =11 - 10 =1 1110 001 0010 1 0101 0101 0000 0000 1010 E255500A Oxlc
SUBSGT R5, R5, #2 ; R =1-2=-1 1100 001 0010 1 0101 0101 0000 0000 0010 C2555002 0x20
ADD R5, R5, #12 ; RS = -1+ 12 = 11 1110 001 0100 0 0101 0101 0000 0000 1100 E285500C 0x24
SUBS R8, R5, R7 ; R8 =11 - 3 =38 1110 000 0010 1 0101 1000 0000 0000 0111 EO0558007 0x28
BEQ END ; not taken 0000 1010 0000 0000 0000 0000 0000 1100 OAOOOOOF Ox2c
SUBS R8, R3, R4 ; R8 =12 -7 =5 1110 000 0010 1 0011 1000 0000 0000 0100 E0538004 0x30
BGE AROUND ; should be taken 1010 1010 0000 0000 0000 0000 0000 0000 AAOO0O00 0x34
ADD R5, RO, #0 ; should be skipped 1110 001 0100 0 0000 0101 0000 0000 0000 E2805000 0x38
AROUND
SUBS R8, R7, R2 ; R8 =3 -5 = -2 1110 000 0010 1 0111 1000 0000 0000 0010 E0578002 0Ox3c
ADDLT R7, R5, #1 ; R7 = 11+1 = 12 1011 001 0100 O 0101 0111 0000 0000 0001 B2857001 0x40
SUB R7, R7, R2 ; R7 = 12-5 =7 1110 000 0010 O 0111 0111 0000 0000 0010 E0477002 0x44
STR R7, [R3, #224] ; mem([12+224] = 7 1110 010 1100 O 0011 0111 0000 0101 0100 E58370EO0 0x48
LDR R3, [R2, #231]! ;
ADD R15, R15, RO ; PC <= PC + 8 1110 000 0100 O 1111 1111 0000 0000 0000 EOBFFO0O0 0x50
ADD R2, RO, #14 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200E 0x54
B END ; always taken 1110 1010 0000 0000 0000 0000 0000 0001 EAO00001 0x58
ADD R2, RO, #13 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200D 0x5C
ADD R2, RO, #10 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200A 0x60
END
STR R2, [RO, #248] ; mem[248] = ? 1110 010 1100 O 0000 0010 0000 1111 1000 E58020F8 0Ox64

Page 14 of 16



END OF WRITTEN PORTION OF EXAM

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE
COMPUTER PORTION.

Tesk:

1. Wnen did the Pilgrims
land al Plymouth Rock ?

1620.

%

AsS fou Can SEE, 1VE
MEMoRiZEd IS utteRyy
USELESS fact LONG ENoUGH
fo Pass q tESt QUESHION.
I NoW INtENd To foReEt
it foRpVER. YouVe TQuGHt
ME NotHiNGg EXCEPF HOW
10 OfNicallY MaNipulate
HE SYSTEM. CoNGRatulations

Page 15 of 16

FOR THE LOUSY PAY. 4

THEY SAY THE SATISFACTION
OF TEACHING MAKES UP




COMPUTER PORTION OF EXAM

Once you start this question, you may refer to the written portion of the exam, but may
not spend any more time on the written portion or change any of your answers on that
portion.

Modify your ARM multicycle processor from Lab 11 to support the pre-indexed load
instruction. Modify your memfile.dat to replace the existing LDR instruction with the
preindexed load.

[2] Print out your Verilog code and circle or highlight the lines you modified.

[4] Print out a simulation waveform showing at least the value being written to memory
location 248 on the last cycle. Circle this value in the waveform.

Page 16 of 16



