
Page 1 of 16 

This is a closed-book take-home exam.  Electronic devices including calculators are not 
allowed, except on the computer question on the last page.  You are permitted two 8.5x11” 
sheets of paper with notes.   
You are bound by the HMC Honor Code while taking this exam. 
The first part of the exam is written, while the final page is done on the computer based on 
your E85 Lab 11. The entire Lab 11 that you use (including datapath and controller) must 
be your own work; it cannot, for example, include somebody else’s controller. The exam 
is intended to be doable in 3 hours if you have prepared adequately.  However, there will 
be no limit on the time you are allowed except that the written portion must be completed 
in one contiguous block of time and the computer part must be completed in another 
contiguous block of time. A contiguous block of time is a period of time working at a desk 
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85 
resources between the two blocks of time. Please manage your time wisely and do not let 
the exam expand to take more time than is justified. 
Return the exam to the E85 box in the Engineering Department Office no later than 
Wednesday 12/18 at noon. 
Alongside each question, the number of points is written in brackets.  All work and answers 
should be written directly on this examination booklet, except for printouts.  Use the backs 
of pages if necessary.  Write neatly; illegible answers will be marked wrong.  Show your 
work for partial credit. 

Name: ___________________________________________ 

Do Not Write Below This Point 
Page 2:  ____________________ / 4 
Page 3:  ____________________ / 4 
Page 4:  ____________________ / 7 
Page 5:  ____________________ / 3 
Page 6:  ____________________ / 5 
Page 7:  ____________________ / 5 
Page 9:  ____________________ / 4 
Page 10: ____________________ / 4 
Page 11: ____________________ / 8 
Page 16: ____________________ / 6 
Total:  ____________________ / 50 

 

Digital Electronics & Computer Engineering (E85) 
 Harris Fall  2019 
 
 

Final Exam 
 



Page 2 of 16 

[4] Interpret A = 0x40D40000 and B = 0xC0C80000 as IEEE single-precision floating 
point numbers.  Compute their sum C = A + B, and write the result as a floating-point 
number in hexadecimal. 
 

 
 

 
Decimal Value of A: ____________________ 

 
Decimal Value of B: ____________________ 

 
Decimal Value of C: ____________________ 

 
Hexadecimal Representation of C: ____________________ 

 
 

 
 
  



Page 3 of 16 

An AND-OR-INVERT-22 (AOI22) gate computes Y = ~(AB + CD).  The symbol is shown 
below.  An AOI22 is considered one compound gate, not three individual gates. 

 

 
 
[2] Using only an AOI22 gate and inverters, sketch a schematic for a 2:1 multiplexer.  Let 
your inputs be S, D0, and D1, and your output be Y. 
 

 
 

 
 

 
 

 
 
[2] Is it possible to perform any arbitrary function of 2 variables using a single AOI22 gate 
and as many inverters as you want?  Explain why, or give a counterexample. 

 
          YES  /  NO 

 
 

 
 

 
 

 
 

 
 

(explanation / counterexample) 
  



Page 4 of 16 

Consider the circuit below. Notice that the circuit uses an AOI22 gate defined in the 
previous problem. 

 
 

 [4] Draw a state transition diagram for the circuit. 

 
 

 
 

 
 

 
 

 
 

 
 

[3] Suppose the inputs below are applied.  Sketch the behavior of the states and outputs. 

 
 



Page 5 of 16 

[3] Write Behavioral Verilog code for the circuit based on your state transition diagram. 
 
module final(input  logic clk, reset, 

      input  logic a, b, 

     output logic x, y); 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

endmodule 

 
  



Page 6 of 16 

Consider the same circuit, repeated here for your convenience. 

 
 

[2] How many logic elements are required to build this circuit on our Spartan FPGA?  
 

 
 

 
 

 
Logic Elements ____________ 

 
[3] Suppose that each input or clock pin of each gate or register has 3 fF of capacitance.  
(Note that the AOI22 has 4 input pins.) The X and Y outputs each drive 10 fF of 
capacitance. Suppose that the data signals have an average activity factor a of 0.1, and 
reset has an activity factor of approximately 0.  The power supply voltage is √2	V, and the 
circuit operates at 1 GHz. Compute the power consumption of the circuit. 

 
 

 
 

 
 

 
 

 
 

 
 

 
Power (Watts) ___________________________ 

  



Page 7 of 16 

[5] Write an assembly language function to compare two strings.  The answer should be 1 
if the first string comes earlier in alphabetical (ASCII) order than the second, -1 if the first 
string comes later than the second, and 0 if the strings are identical.  When the function is 
called, R0 and R1 contain the base address of two null-termianted strings.  Return your 
result in R0. Hint: MVN R0, #0 puts -1 in R0. 

Use ASCII order for comparison of nonalphabetic characters.  For example,  
 strcmp("Alicia", "Ben") = 1 

 strcmp("MIT", "HMC") = -1 

 strcmp("Finals", "Finals") = 0 

 strcmp("E85A", "E85") = -1  

 strcmp("cash", "ca$h") = -1 because the ASCII value for s is 115 and for $ is 36. 
 
  



Page 8 of 16 

[4] Refer to the memory maps below using the I2C1 Inter-integrated circuit port. Write a C function to set 
the 10-bit Own Address field (OA1) of the I2C_OAR1 to 0x047 and then wait until the Receive Not Empty 
(RXNE) field of the I2_ISR is true. Don’t rely on any libraries; define the register addresses yourself. 
 

 
 

 
  

(put solution on next page)  



Page 9 of 16 

void i2c_twiddling(void) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}  



Page 10 of 16 

Consider the following program.  Initially, suppose R5 contains the value 0x0400 and 
memory location 0x420 contains the value 17. 

LDR R6, [R5, #0x20] 

ADD R7, R6, #1 

SUBS R1, R5, #42 

BNE AROUND 

SUB R8, R5, #30 

ADD R8, R8, R7 

STR R8, [R5, #0x24] 

AROUND 

STR R7, [R5, #0x28] 

The program is executed on our pipelined processor with the same hazard handling you 
considered in class and Problem Set 10. The behavior of the pipeline for the first instruction 
is illustrated below.  For example, in cycle 2, the value 0x0400 is read from the first port 
of the register file. 

 

 
 

 
 

 
 

 
 

 
 

 
 

[1] What value is written to the register file on cycle 5?   ___________ 
 

[1] What does the ALU do on cycle 6?     ___________ 
 

[1] In which cycle is the memory written?     ___________ 
 

[1] Which memory address is written?     ___________  



Page 11 of 16 

The ARM LDR Rd, [Rn, imm]! is like an ordinary LDR but also updates the base 
address Rn = Rn + imm.  This is called a pre-indexed load.  For example, if R1 is initially 
0x1000, and memory location 0x1008 contains 42, then LDR R2, [R1, #8] puts 42 in 
R2 and 0x1008 in R1. In ARM machine language, the W bit of the function field is 1 for 
pre-indexed loads and 0 for ordinary loads. Note that Ibar = 0, P = 1, U = 1, B = 0, and L 
= 1 for both kinds of loads. Modify the ARM multicycle processor to support the 
preindexed load instruction, using as little additional hardware as feasible.  
[3] Mark up the attached multicycle processor diagram and ALU to handle the new 
instructions. 
[2] Mark up the attached multicycle controller (including state transition diagram and truth 
tables) to handle the new instructions. 
[2] The attached multicycle memfile.s test code has highlighted modifications to test the 
new instruction.  As compared to the memfile.s from Lab 11, it replaces the LDR 
instruction at 0x4C with an a pre-indexed load. 
Translate the pre-indexed command to machine language. Express your code in 
hexadecimal. The format for a memory instruction is given below. The cond field for 
ALWAYS is 1110.    Hint: 23110 = E716. 

 
 
 

LDR R3, [R2, #231]! _____________________ 
 

 [1] Predict what value should be written to mem[248] at the last line of the program. 

 
 

Predicted Value: _____________________ 

B.2 MEMORY INSTRUCTIONS
The most common memory instructions (LDR, STR, LDRB, and STRB) oper-
ate on words or bytes and are encoded with op = 01. Extra memory
instructions operating on halfwords or signed bytes are encoded with
op = 00 and have less flexibility generating Src2. The immediate offset
is only 8 bits and the register offset cannot be shifted. LDRB and LDRH
zero-extend the bits to fill a word, while LDRSB and LDRSH sign-extend
the bits. Also see memory indexing modes in Section 6.3.6.

Memory

cond op Rn Rd
31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Extra memory

cond op Rn Rd
31:28 27:26 25:20 19:16 15:12 6:5

Src2a00 0 L

funct

I = 1

I = 0

11:8

WIUP Src2b1 op2 1
11:8 3:07 4 imm87:4

3:0

imm83:0

11:8

0000

3:0

Rm

Immediate

Register

Immediate

Register

Figure B.3 Memory instruction encodings

Table B.3 Memory instructions

op B op2 L Name Description Operation

01 0 N/A 0 STR Rd, [Rn, ±Src2] Store Register Mem[Adr] ← Rd

01 0 N/A 1 LDR Rd, [Rn, ±Src2] Load Register Rd ← Mem[Adr]

01 1 N/A 0 STRB Rd, [Rn, ±Src2] Store Byte Mem[Adr] ← Rd7:0

01 1 N/A 1 LDRB Rd, [Rn, ±Src2] Load Byte Rd ← Mem[Adr]7:0

00 N/A 01 0 STRH Rd, [Rn, ±Src2] Store Halfword Mem[Adr] ← Rd15:0

00 N/A 01 1 LDRH Rd, [Rn, ±Src2] Load Halfword Rd ← Mem[Adr]15:0

00 N/A 10 1 LDRSB Rd, [Rn, ±Src2] Load Signed Byte Rd ← Mem[Adr]7:0

00 N/A 11 1 LDRSH Rd, [Rn, ±Src2] Load Signed Half Rd ← Mem[Adr]15:0

538 APPENDIX B ARM Instructions



Page 12 of 16 

Multicycle Processor 

 

ALU 

 

before sending it to PCWrite, RegWrite, and MemWrite so that updated
condition flags are not seen until the end of an instruction. The remainder
of this section develops the state transition diagram for the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following state
transition diagrams readable, only the relevant control signals are listed.
Select signals are listed only when their value matters; otherwise, they
are don’t care. Enable signals (RegW, MemW, IRWrite, and NextPC)
are listed only when they are asserted; otherwise, they are 0.

The first step for any instruction is to fetch the instruction frommemory
at the address held in the PC and to increment the PC to the next instruction.
The FSM enters this Fetch state on reset. The control signals are shown in
Figure 7.32. The data flow on this step is shown in Figure 7.33, with the
instruction fetch highlighted in blue and the PC increment highlighted
in gray. To read memory, AdrSrc= 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register, IR.
Meanwhile, the PC should be incremented by 4 to point to the next instruc-
tion. Because the ALU is not being used for anything else, the processor can

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
e

ad
D

a
ta

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

R
egS

rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1
0

0
1

Figure 7.30 Complete multicycle processor

414 CHAPTER SEVEN Microarchitecture

it to perform subtraction:A+B + 1=A−B.) IfALUControl= 10, the ALU
computes A AND B. If ALUControl= 11, the ALU performs AOR B.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. Figure 5.16 shows the ALU symbol
with a 4-bit ALUFlags output. As shown in the schematic of this ALU
in Figure 5.17, the ALUFlags output is composed of the N, Z, C, and V
flags that indicate, respectively, that the ALU output is negative or zero
or that the adder produced a carry out or overflowed. Recall that the
most significant bit of a two's complement number is 1 if it is negative
and 0 otherwise. Thus, the N flag is connected to the most significant
bit of the ALU output, Result31. The Z flag is asserted when all of the bits
of Result are 0, as detected by the N-bit NOR gate in Figure 5.17. The C
flag is asserted when the adder produces a carry out and the ALU is per-
forming addition or subtraction (ALUControl1= 0).

Overflow detection, as shown on the left side of Figure 5.17, is trickier.
Recall from Section 1.4.6 that overflow occurs when the addition of
two same signed numbers produces a result with the opposite sign.
So, V is asserted when all three of the following conditions are true: (1)
the ALU is performing addition or subtraction (ALUControl1= 0), (2)
A and Sum have opposite signs, as detected by the XOR gate, and, as

ALU

N N

N

2

A B

Result

ALUControl

4

ALUFlags
{N,Z,C,V}

Figure 5.16 ALU symbol with
output flags

+

00

A B

Cout

Result

01

A
LU

C
ontrol0

ALUControl

Sum

NN

N

N

N NNN

N

2
011011

Zero

ALUControl1

Result31

NegativeCarry

ALUControl0

A31

B31

ALUFlags
4

ZN VC

Sum31

oVerflow

Figure 5.17 N-bit ALU with output
flags

250 CHAPTER FIVE Digital Building Blocks



Page 13 of 16 

Multicycle Controller 

 
 

 

 

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite
RegWrite

PCWritePCS
NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
onditional Logic

Main
FSM

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW
RegW

4:0

NextPC
IRWrite

AdrSrc
ResultSrc1:0

ALUSrcB1:0

Instr
DecoderOp1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

Condition 
C

heck

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o

ndE
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register
Enables

Multiplexer 
Selects

C
LK

F
lag

W
rite

1:0

Figure 7.31 Multicycle control unit

7.4 Multicycle Processor 415

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory 
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch 
Op = 10

LDR STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423



Page 14 of 16 

 
 

 
 
; memfile.dat 

MAIN   
 SUB R0, R15, R15  ; R0 = 0            1110 000 0010 0 1111 0000 0000 0000 1111 E04F000F 0x00 
 ADD R2, R0, #5        ; R2 = 5            1110 001 0100 0 0000 0010 0000 0000 0101 E2802005 0x04 
 ADD R3, R0, #12     ; R3 = 12        1110 001 0100 0 0000 0011 0000 0000 1100 E280300C 0x08 
 SUB R7, R3, #9     ; R7 = 3         1110 001 0010 0 0011 0111 0000 0000 1001 E2437009 0x0c 
 ORR R4, R7, R2     ; R4 = 3 OR 5 = 7   1110 000 1100 0 0111 0100 0000 0000 0010 E1874002 0x10 
 AND R5, R3, R4     ; R5 = 12 AND 7 = 4 1110 000 0000 0 0011 0101 0000 0000 0100 E0035004 0x14 
 ADD R5, R5, R4     ; R5 = 4 + 7 = 11   1110 000 0100 0 0101 0101 0000 0000 0100 E0855004 0x18 
 SUBS R5, R5, #10 ; R5 = 11 - 10 = 1  1110 001 0010 1 0101 0101 0000 0000 1010 E255500A 0x1c 
 SUBSGT R5, R5, #2 ; R5 = 1 - 2 = -1   1100 001 0010 1 0101 0101 0000 0000 0010 C2555002 0x20 
 ADD R5, R5, #12  ; R5 = -1 + 12 = 11 1110 001 0100 0 0101 0101 0000 0000 1100 E285500C 0x24  
 SUBS R8, R5, R7     ; R8 = 11 - 3 = 8   1110 000 0010 1 0101 1000 0000 0000 0111 E0558007 0x28 
 BEQ END         ; not taken         0000 1010 0000  0000 0000 0000 0000 1100 0A00000F 0x2c 
 SUBS R8, R3, R4     ; R8 = 12 - 7  = 5  1110 000 0010 1 0011 1000 0000 0000 0100 E0538004 0x30 
 BGE AROUND        ; should be taken   1010 1010 0000  0000 0000 0000 0000 0000 AA000000 0x34 
 ADD R5, R0, #0      ; should be skipped 1110 001 0100 0 0000 0101 0000 0000 0000 E2805000 0x38 
AROUND    
 SUBS R8, R7, R2    ; R8 = 3 - 5 = -2   1110 000 0010 1 0111 1000 0000 0000 0010 E0578002 0x3c 
 ADDLT R7, R5, #1   ; R7 = 11+1 = 12    1011 001 0100 0 0101 0111 0000 0000 0001 B2857001 0x40 
 SUB R7, R7, R2     ; R7 = 12-5 = 7     1110 000 0010 0 0111 0111 0000 0000 0010 E0477002 0x44 
 STR R7, [R3, #224]   ; mem[12+224] = 7   1110 010 1100 0 0011 0111 0000 0101 0100 E58370E0 0x48 
 LDR R3, [R2, #231]! ;  
 ADD R15, R15, R0 ; PC <- PC + 8      1110 000 0100 0 1111 1111 0000 0000 0000 E08FF000 0x50 
 ADD R2, R0, #14     ; shouldn't happen  1110 001 0100 0 0000 0010 0000 0000 0001 E280200E 0x54 
 B END              ; always taken      1110 1010 0000  0000 0000 0000 0000 0001 EA000001 0x58 
 ADD R2, R0, #13    ; shouldn't happen  1110 001 0100 0 0000 0010 0000 0000 0001 E280200D 0x5C 
 ADD R2, R0, #10     ; shouldn't happen  1110 001 0100 0 0000 0010 0000 0000 0001 E280200A 0x60 
END 
 STR R2, [R0, #248]  ; mem[248] = ?      1110 010 1100 0 0000 0010 0000 1111 1000 E58020F8 0x64 

use it to compute PC+ 4 at the same time that it fetches the instruction.
ALUSrcA= 1, so SrcA comes from the PC. ALUSrcB= 10, so SrcB is the
constant 4. ALUOp= 0, so the ALU produces ALUControl= 00 to make
the ALU add. To update the PC with PC+ 4, ResultSrc= 10 to choose the
ALUResult and NextPC= 1 to enable PCWrite.

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction Op Funct5 Funct0 RegSrc1 RegSrc0 ImmSrc1:0

LDR 01 X 1 X 0 01

STR 01 X 0 1 0 01

DP immediate 00 1 X X 0 00

DP register 00 0 X 0 0 00

B 10 X X X 1 10

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

Reset

Figure 7.32 Fetch

1
0

00
01
10

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

ReadData

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

0
1

R
egSrc19:16

15:12

23:0

3:0
15

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1 0 0 1 XX 0 XX 1 10 00 10

Figure 7.33 Data flow during the fetch step

416 CHAPTER SEVEN Microarchitecture

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx ) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture



Page 15 of 16 

END OF WRITTEN PORTION OF EXAM 
 

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO 
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE 

COMPUTER PORTION. 

 
 
 



Page 16 of 16 

COMPUTER PORTION OF EXAM 
 
Once you start this question, you may refer to the written portion of the exam, but may 
not spend any more time on the written portion or change any of your answers on that 
portion. 
 

 
Modify your ARM multicycle processor from Lab 11 to support the pre-indexed load 
instruction.  Modify your memfile.dat to replace the existing LDR instruction with the 
preindexed load. 

 
[2] Print out your Verilog code and circle or highlight the lines you modified. 

 
 

 
[4] Print out a simulation waveform showing at least the value being written to memory 
location 248 on the last cycle.  Circle this value in the waveform. 
 

 
 


