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This is a closed-book take-home exam.  Electronic devices including calculators are not 
allowed, except on the computer question on the last page.  You are permitted two 8.5x11” 
sheets of paper with notes.   
You are bound by the HMC Honor Code while taking this exam. 
The first part of the exam is written, while the final page is done on the computer based on 
your E85 Lab 11. The entire Lab 11 that you use (including datapath and controller) must 
be your own work; it cannot, for example, include somebody else’s controller. The exam 
is intended to be doable in 3 hours if you have prepared adequately.  However, there will 
be no limit on the time you are allowed except that the written portion must be completed 
in one contiguous block of time and the computer part must be completed in another 
contiguous block of time. A contiguous block of time is a period of time working at a desk 
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85 
resources between the two blocks of time. Please manage your time wisely and do not let 
the exam expand to take more time than is justified. 
Return the exam to the E85 box in the Engineering Department Office no later than 
Wednesday 5/15 at noon (5/10 at 5 pm for seniors). 
Alongside each question, the number of points is written in brackets.  All work and answers 
should be written directly on this examination booklet, except for printouts.  Use the backs 
of pages if necessary.  Write neatly; illegible answers will be marked wrong.  Show your 
work for partial credit. 
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[2] Consider a 512-word x 64-bit RAM.  The RAM requires k bits of address and 2s bit 
cells total.  What are k and s? 

 
 

k: ____________________ 
s: ____________________ 

 
 

 
 

 
[3] An IEEE half-precision floating point number is similar to an ordinary floating-point 
number but has 10 bits of significand and 5 bits of exponent with a bias of 15.   
Write -6.625 as a half-precision floating point number, and express your answer in 
hexadecimal. 
 

 
 

 
 

 
 

Number: ______________________ 
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How many Logic Elements does each of the following Verilog modules require to fit onto 
your Cyclone V FPGA?  Explain your reasoning. 
module xor7(input  logic [6:0] a, 

            output logic       y); 

  assign y = a[0] ^ a[1] ^ a[2] ^ a[3] ^ a[4] ^ a[5] ^ a[6]; 

endmodule 

 
[2] Logic Elements: ______________________ 

 
module lfsr(input  logic clk, 

            input  logic reset, 

            output logic q); 

  logic state[9:0]; 

  always_ff @(posedge clk, posedge reset) 

    if (reset) state <= 9’b0; 

    else state <= {state[8:0], state[8]^state[4]}; 

endmodule 

 

[2] Logic Elements: ______________________ 
 

module cmddec(input  logic [24:21] instr, 

              output logic isAND, isXOR, isSUB, isADD, isCMP); 

  always_comb  

    begin 

      isAND = 0; isXOR = 0; isSUB = 0; isADD = 0; isCMP = 0; 

      case (instr)  

        4’b0000: isAND = 1; 

        4’b0001: isXOR = 1; 

        4’b0010: isSUB = 1; 

        4’b0100: isADD = 1; 

        4’b1010: isCMP = 1; 

      endcase 

    end 

endmodule 

[2] Logic Elements: ______________________ 
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[6] Write an assembly language program to find the position of the most significant ‘1’ bit 
in a 32-bit word in R1.  Your answer should be in the range of 0 (a ‘1’ only in the least 
significant bit) to 31 (a 1 in the most significant bit). For example, if the word is 
0000 0000 0000 0000 0000 0000 0001 0100  
the answer should be 4, because bits 4 and 2 are both ‘1’ and bit 4 is the most significant.  
If the word is all 0’s, return 32. Return your result in R0.   
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The following program is supposed to sum an array of 10 ints.  The base address of the 
array is in R4, the sum is in R6, and the loop counter is in R5.  The result is in R6. 
 

MOV R5, #0 

MOV R6, #0 

LOOP    

LDR R0, [R4, R5] 

ADD R6, R6, R0 

ADD R5, R5, #1 

CMP R5, #10 

BNE LOOP 

DONE 

 

[2] The program has one bug. Explain what the bug is. 
 

 
 

[2] Mark up the code to fix the bug with as little change to the program as possible. 
 

 
 
[3] How many cycles will the program take to run on a pipelined processor?  Assume the 
processor has the same hazards as the pipelined processor in class, but that it has been 
enhance all of the instructions/modes needed for this program?  Define the number of 
cycles required to include fetching all of the instructions, but not waiting for the last 
instructions in the pipeline to complete after the program reaches DONE.  The number of 
cycles should be the same in your fixed code as in the original; if not, count cycles based 
on the original code.  Explain your reasoning. 
 

Cycles ________________ 
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Consider the following circuit.   

 
[2] Draw a state transition diagram corresponding to the circuit. 
 

 
 

 
 

 
[2] Give a simple explanation of when the circuit asserts BINGO. 

 
 

 
[3] Write behavioral (not structural) Verilog code gracefully describing the circuit. 

 
module final(input  logic clk, reset, 

     input  logic A, B, 

     output logic BINGO); 

 

 

 

 

 

 

 

 

 

 

 

endmodule 
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The ARM LDRB Rd, [Rn, imm] is like LDR but loads a single byte into the bottom 
8 bits of a register and fills the upper 24 bits with zeros.  Recall that ARM is a little-endian 
architecture in which the least significant byte of a word is stored at the lowest address in 
the word. Modify the ARM multicycle processor to support the LDRB instruction, using 
as little additional hardware as feasible. 

 
[3] Mark up the attached multicycle processor diagram and ALU to handle the new 
instructions. 
[2] Mark up the attached multicycle controller (including state transition diagram and truth 
tables) to handle the new instructions. 
[2] The attached multicycle memfile.s test code has highlighted modifications to test the 
new instruction.  As compared to the memfile.s from Lab 11, it changes the constant in the 
ADDLT command at 0x40 from #1 to #255 and replaces the LDR instruction at 0x4C with 
an LDRB. 
Translate the LDRB command to machine language. Express your code in hexadecimal. 
The format for a memory instruction is given below. The cond field for ALWAYS is 1110.    
The six control bits are described in the table below. 

 

 

    
LDRB R2, [R0, #237] _____________________ 

 
[1] Predict what value should be written to mem[248] at the last line of the program. 

 
 

Predicted Value: _____________________ 

B.2 MEMORY INSTRUCTIONS
The most common memory instructions (LDR, STR, LDRB, and STRB) oper-
ate on words or bytes and are encoded with op = 01. Extra memory
instructions operating on halfwords or signed bytes are encoded with
op = 00 and have less flexibility generating Src2. The immediate offset
is only 8 bits and the register offset cannot be shifted. LDRB and LDRH
zero-extend the bits to fill a word, while LDRSB and LDRSH sign-extend
the bits. Also see memory indexing modes in Section 6.3.6.
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Figure B.3 Memory instruction encodings

Table B.3 Memory instructions

op B op2 L Name Description Operation

01 0 N/A 0 STR Rd, [Rn, ±Src2] Store Register Mem[Adr] ← Rd

01 0 N/A 1 LDR Rd, [Rn, ±Src2] Load Register Rd ← Mem[Adr]

01 1 N/A 0 STRB Rd, [Rn, ±Src2] Store Byte Mem[Adr] ← Rd7:0

01 1 N/A 1 LDRB Rd, [Rn, ±Src2] Load Byte Rd ← Mem[Adr]7:0

00 N/A 01 0 STRH Rd, [Rn, ±Src2] Store Halfword Mem[Adr] ← Rd15:0

00 N/A 01 1 LDRH Rd, [Rn, ±Src2] Load Halfword Rd ← Mem[Adr]15:0

00 N/A 10 1 LDRSB Rd, [Rn, ±Src2] Load Signed Byte Rd ← Mem[Adr]7:0

00 N/A 11 1 LDRSH Rd, [Rn, ±Src2] Load Signed Half Rd ← Mem[Adr]15:0
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before, cmd is 13 (11012), sh encodes the type of shift, Rm holds the value
to be shifted, and the shifted result is placed in Rd. This instruction uses
the register-shifted register addressing mode, where one register (Rm) is
shifted by the amount held in a second register (Rs). Because the least
significant 8 bits of Rs are used, Rm can be shifted by up to 255 positions.
For example, if Rs holds the value 0xF001001C, the shift amount is 0x1C
(28). A logical shift by more than 31 bits pushes all the bits off the end
and produces all 0's. Rotate is cyclical, so a rotate by 50 bits is equivalent
to a rotate by 18 bits.

6 . 4 . 2 Memory Instructions

Memory instructions use a format similar to that of data-processing
instructions, with the same six overall fields: cond, op, funct, Rn, Rd,
and Src2, as shown in Figure 6.22. However, memory instructions use a
different funct field encoding, have two variations of Src2, and use an
opof 012. Rn is the base register, Src2 holds the offset, and Rd is the des-
tination register in a load or the source register in a store. The offset is
either a 12-bit unsigned immediate (imm12) or a register (Rm) that is
optionally shifted by a constant (shamt5). funct is composed of six con-
trol bits: I, P, U, B, W, and L. The I (immediate) and U (add) bits deter-
mine whether the offset is an immediate or register and whether it should
be added or subtracted, according to Table 6.9. The P (pre-index) and W
(writeback) bits specify the index mode according to Table 6.10. The L
(load) and B (byte) bits specify the type of memory operation according
to Table 6.11.
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Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Table 6.9 Offset type control bits for memory instructions

Meaning
Bit I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Table 6.10 Index mode control
bits for memory instructions

P W Index Mode

0 0 Post-index

0 1 Not supported

1 0 Offset

1 1 Pre-index

Table 6.11 Memory operation type
control bits for memory instructions

L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB
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Multicycle Processor 

 

ALU 

 

before sending it to PCWrite, RegWrite, and MemWrite so that updated
condition flags are not seen until the end of an instruction. The remainder
of this section develops the state transition diagram for the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following state
transition diagrams readable, only the relevant control signals are listed.
Select signals are listed only when their value matters; otherwise, they
are don’t care. Enable signals (RegW, MemW, IRWrite, and NextPC)
are listed only when they are asserted; otherwise, they are 0.

The first step for any instruction is to fetch the instruction frommemory
at the address held in the PC and to increment the PC to the next instruction.
The FSM enters this Fetch state on reset. The control signals are shown in
Figure 7.32. The data flow on this step is shown in Figure 7.33, with the
instruction fetch highlighted in blue and the PC increment highlighted
in gray. To read memory, AdrSrc= 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register, IR.
Meanwhile, the PC should be incremented by 4 to point to the next instruc-
tion. Because the ALU is not being used for anything else, the processor can

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
e

ad
D

a
ta

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

R
egS

rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1
0

0
1

Figure 7.30 Complete multicycle processor

414 CHAPTER SEVEN Microarchitecture

it to perform subtraction:A+B + 1=A−B.) IfALUControl= 10, the ALU
computes A AND B. If ALUControl= 11, the ALU performs AOR B.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. Figure 5.16 shows the ALU symbol
with a 4-bit ALUFlags output. As shown in the schematic of this ALU
in Figure 5.17, the ALUFlags output is composed of the N, Z, C, and V
flags that indicate, respectively, that the ALU output is negative or zero
or that the adder produced a carry out or overflowed. Recall that the
most significant bit of a two's complement number is 1 if it is negative
and 0 otherwise. Thus, the N flag is connected to the most significant
bit of the ALU output, Result31. The Z flag is asserted when all of the bits
of Result are 0, as detected by the N-bit NOR gate in Figure 5.17. The C
flag is asserted when the adder produces a carry out and the ALU is per-
forming addition or subtraction (ALUControl1= 0).

Overflow detection, as shown on the left side of Figure 5.17, is trickier.
Recall from Section 1.4.6 that overflow occurs when the addition of
two same signed numbers produces a result with the opposite sign.
So, V is asserted when all three of the following conditions are true: (1)
the ALU is performing addition or subtraction (ALUControl1= 0), (2)
A and Sum have opposite signs, as detected by the XOR gate, and, as
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Figure 5.16 ALU symbol with
output flags
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Multicycle Controller 
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ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory 
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch 
Op = 10

LDR STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423



Page 10 of 12 

 
 

 
 
; memfile.dat 

MAIN   
SUB R0, R15, R15  ; R0 = 0            1110 000 0010 0 1111 0000 0000 0000 1111 E04F000F 0x00 
ADD R2, R0, #5         ; R2 = 5            1110 001 0100 0 0000 0010 0000 0000 0101 E2802005 0x04 
ADD R3, R0, #12     ; R3 = 12        1110 001 0100 0 0000 0011 0000 0000 1100 E280300C 0x08 
SUB R7, R3, #9     ; R7 = 3         1110 001 0010 0 0011 0111 0000 0000 1001 E2437009 0x0c 
ORR R4, R7, R2     ; R4 = 3 OR 5 = 7   1110 000 1100 0 0111 0100 0000 0000 0010 E1874002 0x10 
AND R5, R3, R4     ; R5 = 12 AND 7 = 4 1110 000 0000 0 0011 0101 0000 0000 0100 E0035004 0x14 
ADD R5, R5, R4     ; R5 = 4 + 7 = 11   1110 000 0100 0 0101 0101 0000 0000 0100 E0855004 0x18 
SUBS R5, R5, #10 ; R5 = 11 - 10 = 1  1110 001 0010 1 0101 0101 0000 0000 1010 E255500A 0x1c 
SUBSGT R5, R5, #2 ; R5 = 1 - 2 = -1   1100 001 0010 1 0101 0101 0000 0000 0010 C2555002 0x20 
ADD R5, R5, #12  ; R5 = -1 + 12 = 11 1110 001 0100 0 0101 0101 0000 0000 1100 E285500C 0x24  
SUBS R8, R5, R7     ; R8 = 11 - 3 = 8   1110 000 0010 1 0101 1000 0000 0000 0111 E0558007 0x28 
BEQ END         ; not taken         0000 1010 0000  0000 0000 0000 0000 1100 0A00000F 0x2c 
SUBS R8, R3, R4     ; R8 = 12 - 7  = 5  1110 000 0010 1 0011 1000 0000 0000 0100 E0538004 0x30 
BGE AROUND        ; should be taken   1010 1010 0000  0000 0000 0000 0000 0000 AA000000 0x34 
ADD R5, R0, #0      ; should be skipped 1110 001 0100 0 0000 0101 0000 0000 0000 E2805000 0x38 
AROUND    
SUBS R8, R7, R2    ; R8 = 3 - 5 = -2   1110 000 0010 1 0111 1000 0000 0000 0010 E0578002 0x3c 
ADDLT R7, R5, #255   ; R7 = 11+255=266   1011 001 0100 0 0101 0111 0000 1111 1111 B28570FF 0x40 
SUB R7, R7, R2     ; R7 = 266-5= 261   1110 000 0010 0 0111 0111 0000 0000 0010 E0477002 0x44 
STR R7, [R3, #224]    ; mem[12+224] = 261    1110 010 1100 0 0011 0111 0000 0101 0100 E58370E0 0x48 
LDRB R2, [R0, #237]    ;  
ADD R15, R15, R0 ; PC <- PC + 8      1110 000 0100 0 1111 1111 0000 0000 0000 E08FF000 0x50 
ADD R2, R0, #14     ; shouldn't happen  1110 001 0100 0 0000 0010 0000 0000 0001 E280200E 0x54 
B END              ; always taken      1110 1010 0000  0000 0000 0000 0000 0001 EA000001 0x58 
ADD R2, R0, #13    ; shouldn't happen  1110 001 0100 0 0000 0010 0000 0000 0001 E280200D 0x5C 
ADD R2, R0, #10        ; shouldn't happen  1110 001 0100 0 0000 0010 0000 0000 0001 E280200A 0x60 
END 
STR R2, [R0, #248]  ; mem[248] = ?      1110 010 1100 0 0000 0010 0000 1111 1000 E58020F8 0x64 

use it to compute PC+ 4 at the same time that it fetches the instruction.
ALUSrcA= 1, so SrcA comes from the PC. ALUSrcB= 10, so SrcB is the
constant 4. ALUOp= 0, so the ALU produces ALUControl= 00 to make
the ALU add. To update the PC with PC+ 4, ResultSrc= 10 to choose the
ALUResult and NextPC= 1 to enable PCWrite.

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction Op Funct5 Funct0 RegSrc1 RegSrc0 ImmSrc1:0

LDR 01 X 1 X 0 01

STR 01 X 0 1 0 01

DP immediate 00 1 X X 0 00

DP register 00 0 X 0 0 00

B 10 X X X 1 10

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

Reset

Figure 7.32 Fetch
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Figure 7.33 Data flow during the fetch step
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The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx ) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10
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END OF WRITTEN PORTION OF EXAM 
 

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO 
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE 

COMPUTER PORTION. 
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COMPUTER PORTION OF EXAM 
 
Once you start this question, you may refer to the written portion of the exam, but may 
not spend any more time on the written portion or change any of your answers on that 
portion. 
 

 
Modify your ARM multicycle processor from Lab 11 to support the LDRB instruction.  
Modify your memfile.dat to replace the existing LDR instruction with the LDRB and to 
change the ADDLT instruction’s highlighted in the earlier code. 

 
[2] Print out your Verilog code and circle or highlight the lines you modified. 

 
 

 
[4] Print out a simulation waveform showing at least the value being written to memory 
location 248 on the last cycle.  Circle this value in the waveform. 
 

 
 


