Digital Electronics & Computer Engineering (E8S)
Harris Spring 2019

Final Exam

This is a closed-book take-home exam. Electronic devices including calculators are not
allowed, except on the computer question on the last page. You are permitted two 8.5x11”
sheets of paper with notes.

You are bound by the HMC Honor Code while taking this exam.

The first part of the exam is written, while the final page is done on the computer based on
your E85 Lab 11. The entire Lab 11 that you use (including datapath and controller) must
be your own work; it cannot, for example, include somebody else’s controller. The exam
is intended to be doable in 3 hours if you have prepared adequately. However, there will
be no limit on the time you are allowed except that the written portion must be completed
in one contiguous block of time and the computer part must be completed in another
contiguous block of time. A contiguous block of time is a period of time working at a desk
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85
resources between the two blocks of time. Please manage your time wisely and do not let
the exam expand to take more time than is justified.

Return the exam to the E85 box in the Engineering Department Office no later than
Wednesday 5/15 at noon (5/10 at 5 pm for seniors).

Alongside each question, the number of points is written in brackets. All work and answers
should be written directly on this examination booklet, except for printouts. Use the backs
of pages if necessary. Write neatly; illegible answers will be marked wrong. Show your
work for partial credit.

Name:

Do Not Write Below This Point

Page 2: /5
Page 3: /6
Page 4: /6
Page 5: /17
Page 6: /17
Page 7: /8
Page 12: /6
Total: /45

Page 1 of 12

[2] Consider a 512-word x 64-bit RAM. The RAM requires k bits of address and 2° bit
cells total. What are k and s?

[3] An IEEE half-precision floating point number is similar to an ordinary floating-point
number but has 10 bits of significand and 5 bits of exponent with a bias of 15.

Write -6.625 as a half-precision floating point number, and express your answer in
hexadecimal.

Number:

Page 2 of 12

How many Logic Elements does each of the following Verilog modules require to fit onto
your Cyclone V FPGA? Explain your reasoning.

module xor7 (input logic [6:0] a,
output logic y) i
assign y = a[0] ~ all] ~ a[2] ~ al3] ~ afl4] »~ a[5] ©~ al6];

endmodule

[2] Logic Elements:

module lfsr(input logic clk,
input logic reset,
output logic q);
logic state[9:0];
always ff @ (posedge clk, posedge reset)
if (reset) state <= 9'b0;
else state <= {state[8:0], state[8]"state[4]};

endmodule

[2] Logic Elements:

module cmddec (input logic [24:21] instr,

output logic i1isAND, isXOR, isSUB, isADD, isCMP);

always comb
begin

1sAND = 0; 1sXOR O; 1sSUB = 0; isADD = 0; 1isCMP = 0;

case (instr)

4’pb0000: isAND = 1;
4’pb0001: isXOR = 1;
4"pb0010: isSUB = 1;
4’p0100: isADD = 1;
4’p1010: isCMP = 1;
endcase
end
endmodule

[2] Logic Elements:

Page 3 of 12

[6] Write an assembly language program to find the position of the most significant ‘1’ bit
in a 32-bit word in R1. Your answer should be in the range of 0 (a ‘1’ only in the least
significant bit) to 31 (a 1 in the most significant bit). For example, if the word is

0000 0000 0000 0000 0000 0000 0001 0100

the answer should be 4, because bits 4 and 2 are both ‘1’ and bit 4 is the most significant.
If the word is all 0’s, return 32. Return your result in RO.

Page 4 of 12

The following program is supposed to sum an array of 10 ints. The base address of the
array is in R4, the sum is in R6, and the loop counter is in R5. The result is in R6.

MOV R5, #0
MOV R6, #0

LOOP
LDR RO, [R4, R5]
ADD R6, R6, RO
ADD R5, R5, #1
CMP R5, #10
BNE LOOP

DONE

[2] The program has one bug. Explain what the bug is.

[2] Mark up the code to fix the bug with as little change to the program as possible.

[3] How many cycles will the program take to run on a pipelined processor? Assume the
processor has the same hazards as the pipelined processor in class, but that it has been
enhance all of the instructions/modes needed for this program? Define the number of
cycles required to include fetching all of the instructions, but not waiting for the last
instructions in the pipeline to complete after the program reaches DONE. The number of
cycles should be the same in your fixed code as in the original; if not, count cycles based
on the original code. Explain your reasoning.

Cycles

Page 5 of 12

Consider the following circuit.

clk

B Q,_I _:>~ BINGO

reset

[2] Draw a state transition diagram corresponding to the circuit.

[2] Give a simple explanation of when the circuit asserts BINGO.

[3] Write behavioral (not structural) Verilog code gracefully describing the circuit.

module final (input logic clk, reset,
input logic A, B,
output logic BINGO) ;

endmodule

Page 6 of 12

The ARM LDRB Rd, [Rn, imm] islike LDR but loads a single byte into the bottom
8 bits of a register and fills the upper 24 bits with zeros. Recall that ARM is a little-endian
architecture in which the least significant byte of a word is stored at the lowest address in
the word. Modify the ARM multicycle processor to support the LDRB instruction, using
as little additional hardware as feasible.

[3] Mark up the attached multicycle processor diagram and ALU to handle the new
instructions.

[2] Mark up the attached multicycle controller (including state transition diagram and truth
tables) to handle the new instructions.

[2] The attached multicycle memfile.s test code has highlighted modifications to test the
new instruction. As compared to the memfile.s from Lab 11, it changes the constant in the
ADDLT command at 0x40 from #1 to #255 and replaces the LDR instruction at 0x4C with
an LDRB.

Translate the LDRB command to machine language. Express your code in hexadecimal.
The format for a memory instruction is given below. The cond field for ALWAYS is 1110.
The six control bits are described in the table below.

Memory _ Immediate 10
sios o726 2520 s 112 1o 1=0_— | imm12 |
| cond [9PilPlulBW || Rn | R | Src2 | i es 4 o
funct T:N|shamt5 |sh|1| Rm ‘

Register

Table 6.9 Offset type control bits for memory instructions

) Meaning
Bit I U
0 Immediate offset in Src2 Subtract offset from base
1 Register offset in Src2 Add offset to base
Table 6.10 Index mode control Table 6.11 Memory operation type
bits for memory instructions control bits for memory instructions
L B Instruction

0 0 Post-index 0 0 STR
0 1 Not supported 0 1 STRB
1 0 Offset 1 0 LDR
1 1 Pre-index 1 1 LDRB

LDRB R2, [RO, #237]

[1] Predict what value should be written to mem[248] at the last line of the program.

Predicted Value:
Page 7 of 12

Multicycle Processor

CLK
PCWrite
AdrSIc |control
MemWrite| Unit
IRWrite ResultSrc
3128 Cond ALUControl
2726 op ALUSrcB
2520 Funct ALUSrcA
15:12 Rd ImmSrc
RegWrite
Flags
|>; ALUFlags
g CLK |
CLK CLK
CLK \ CLK 1%)
WE 19:16 o WE3
rc [Mecl g N RD [instr [RAY A7 RD1 [1A
EN 1I——r A EN, I h2 ALUOU !
Instr / Data A2 RD2 [~ 01
Memory § 15112 A3 s 10
WD (=X g @
I~ — wD3 File g
al — Ri5 B
CLK
230 Extend Extimm
Data
Result
Figure 7.30 Complete multicycle processor
A B
A31 N N
By
ALUControk, Sumg, ALUControl,
NIIPN S
>
; ; ~
c
Cout 9
=1
X
| | Sum S
N N N N
11 10 01 00
5—— ALUControl
Results; N
NZCV
4
Vi C: N Z Result ALUFlags

Page 8 of 12

Multicycle Controller

CLK
Condy,,
ALUFlags.,, 9
(—)Flagw,, ;‘,
5
PCsS 3_, PCWrite
NetPC |
Op1y — RegW B RegWrite
Functyy —p MemW
R eeoder IRWrite
0 AdrSrc
ResultSrc, ,
ALUSTcA
ALUSICB
ImmSrc,,,
RegSrc,.,
ALUControl,
(a) Control Unit _ J
g e
| || |
| Rd,, PCS | NextPC |
H | pcs :}LZ} cowie |
: ! RegW ———————————") RegWwrite :
] RegW MemW 1 O—— Memwrite |
| Memw FlagW,,, |
i e Cae i
| NextPC ° |
| AdrSrc 1 3 |
| Opyyg ResultSre.q| Multiplexer 1 T |
| ALUSrcA | Selects | (|
| ALUSToB, 1 Condso —— |
| (] |
| Functy, 1 =1 o é’ |
l (] 3| 8% !
| ALUControl, , | | ALUFlagsse S H !
| FlagW, [N] |
1 1 Flags:.o |
] Instr ImmSre]]
————————————————— — — - ——————————————— — —— -
(b) Decoder (c) Conditional Logic
Figure 7.31 Multicycle control unit
S0: Fetcl
Reset AdrSrc =0 S1: Decode
AluSrcA = 1 ALUSrcA =1
ALUSrcB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0
ResultSrc = 10 ResultSrc = 10
IRWrite
NextPC Data | Branch
ata Imm -
Memor Op =10
y Op=00
Op =01 Functs = 1

S$2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

LDR
Functy =1

S3: MemRead
ResultSrc = 00

AdrSrc =1

S4: MemWB

S6: ExecuteR
ALUSrcA=0
ALUSrcB = 00
ALUOp =1

S7: Executel
ALUSrcA =0
ALUSIrcB = 01
ALUOp =1

STR
Functo =0

S5: MemWrite
ResultSrc = 00
AdrSrc =1

MemW

S8: ALUWB
ResultSrc = 00
RegW

S9: Branch
ALUSrcA =0
ALUSIrcB = 01

ALUOp =0
ResultSrc = 10

Branch

ResultSrc = 01
RegW

Page 9 of 12

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction (0/% Functs Functy RegSrc; RegSrcy ImmSrcyy
LDR 01 X 1 X 0 01
STR 01 X 0 1 0 01
DP immediate 00 1 X X 0 00
DP register 00 X 0 0 00
B 10 X X X 1 10

1111 EOQ4FO00F
0101 E2802005
1100 E280300C
1001 E2437009
0010 E1874002
0100 E0035004
0100 E0855004
1010 E255500A
0010 C2555002
1100 E285500C
0111 E0558007
1100 OAOOOOOF
0100 E0538004
0000 AA000000
0000 E2805000

0010 E0578002
1111 B28570FF
0010 E0477002

0000
0001
0001
0001

EO8FF000
E280200E
EA000001
E280200D

0x00
0x04
0x08
0x0c
0x10
0x14
0x18
Ox1lc
0x20
0x24
0x28
0x2c
0x30
0x34
0x38

0x3c
0x40
0x44

0 0011 0111 0000 0101 0100 E58370EO0 0x48

0x50
0x54
0x58
0x5C

Functyq Funct,
ALUOp (cmd) (S) Type ALUControl;.
0 X X Not DP 00 (Add) 00
1 0100 0 ADD 00 (Add) 00
1 11
0010 0 SUB 01 (Sub) 00
1 11
0000 0 AND 10 (And) 00
1 10
1100 0 ORR 11 (Or) 00
1 10
; memfile.dat
MAIN
SUB RO, R15, R15 ; RO =0 1110 000 0010 0 1111 0000 0000 0OOO
ADD R2, RO, #5 ; R2 =5 1110 001 0100 0O 0000 0010 0000 0OOO
ADD R3, RO, #12 ; R3 =12 1110 001 0100 0O 0000 0011 0000 0OOO
SUB R7, R3, #9 ; R7 = 3 1110 001 0010 0 0011 0111 0000 0OOO
ORR R4, R7, R2 ; R& = 3 0R S5 =7 1110 000 1100 0 0111 0100 0000 0OOO
AND R5, R3, R4 ; Rb = 12 AND 7 = 4 1110 000 0000 O 0011 0101 0000 0000
ADD R5, R5, R4 ; RS =4 4+ 7 =11 1110 000 0100 0 0101 0101 0000 0OOO
SUBS R5, R5, #10 ; R6 =11 - 10 = 1 1110 001 0010 1 0101 0101 0000 0000
SUBSGT R5, R5, #2 ; RE=1-2= -1 1100 001 0010 1 0101 0101 0000 0OOO
ADD R5, R5, #12 ; Rb = -1 + 12 = 11 1110 001 0100 O 0101 0101 0000 0000
SUBS R8, R5, R7 ; R8 =11 - 3 =8 1110 000 0010 1 0101 1000 0000 0OOO
BEQ END ; not taken 0000 1010 0000 0000 0000 0000 0OOO
SUBS R8, R3, R4 ; R = 12 - 7 =5 1110 000 0010 1 0011 1000 0000 0000
BGE AROUND ; should be taken 1010 1010 0000 0000 0000 0000 0OOO
ADD R5, RO, #0 ; should be skipped 1110 001 0100 0 0000 0101 0000 0000
AROUND
SUBS R8, R7, R2 ; R8 =3 -5 = -2 1110 000 0010 1 0111 1000 0000 0OOO
ADDLT R7, R5, #255 ; R7 = 11+255=266 1011 001 0100 0 0101 0111 0000 1111
SUB R7, R7, R2 ; R7 = 266-5= 261 1110 000 0010 0 0111 0111 0000 0OOO
STR R7, [R3, #224] ; mem[12+4224] = 261 1110 010 1100
LDRB R2, [RO, #237] ;
ADD R15, R15, RO ; PC <- PC + 8 1110 000 0100 0 1111 1111 0000 0OOO
ADD R2, RO, #14 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000
B END ; always taken 1110 1010 0000 0000 0000 0000 0OOO
ADD R2, RO, #13 ; shouldn't happen 1110 001 0100 0O 0000 0010 0000 0000
ADD R2, RO, #10 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200A 0x60
END
STR R2, [RO, #248] ; mem[248] = ? 1110 010 1100 0 0000 0010 0000 1111 1000 E58020F8 0x64

Page 10 of 12

END OF WRITTEN PORTION OF EXAM

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE

COMPUTER PORTION.
1. Explain Newtons First Nakkd FOob MoG. GRUG -
Law of Motion in your PubbaWup ZiNk wattoom I\
OWN Words. GaZoRK . CHUMBLE Spuzz. LOOPHOLES.

\Y

TSN
. P4

Page 11 of 12

COMPUTER PORTION OF EXAM

Once you start this question, you may refer to the written portion of the exam, but may
not spend any more time on the written portion or change any of your answers on that
portion.

Modify your ARM multicycle processor from Lab 11 to support the LDRB instruction.
Modify your memfile.dat to replace the existing LDR instruction with the LDRB and to
change the ADDLT instruction’s highlighted in the earlier code.

[2] Print out your Verilog code and circle or highlight the lines you modified.

[4] Print out a simulation waveform showing at least the value being written to memory
location 248 on the last cycle. Circle this value in the waveform.

Page 12 of 12

