
Page 1 of 12

This is a closed-book take-home exam. Electronic devices including calculators are not
allowed, except on the computer question on the last page. You are permitted two 8.5x11”
sheets of paper with notes.
You are bound by the HMC Honor Code while taking this exam.
The first part of the exam is written, while the final page is done on the computer based on
your E85 Lab 11. The entire Lab 11 that you use (including datapath and controller) must
be your own work; it cannot, for example, include somebody else’s controller. The exam
is intended to be doable in 3 hours if you have prepared adequately. However, there will
be no limit on the time you are allowed except that the written portion must be completed
in one contiguous block of time and the computer part must be completed in another
contiguous block of time. A contiguous block of time is a period of time working at a desk
without breaking for meals, naps, socializing, etc. You cannot study for E85 or consult E85
resources between the two blocks of time. Please manage your time wisely and do not let
the exam expand to take more time than is justified.
Return the exam to the E85 box in the Engineering Department Office no later than
Wednesday 5/15 at noon (5/10 at 5 pm for seniors).
Alongside each question, the number of points is written in brackets. All work and answers
should be written directly on this examination booklet, except for printouts. Use the backs
of pages if necessary. Write neatly; illegible answers will be marked wrong. Show your
work for partial credit.

Name: ___

Do Not Write Below This Point
Page 2: ____________________ / 5
Page 3: ____________________ / 6
Page 4: ____________________ / 6
Page 5: ____________________ / 7
Page 6: ____________________ / 7
Page 7: ____________________ / 8
Page 12: ____________________ / 6
Total: ____________________ / 45

Digital Electronics & Computer Engineering (E85)
 Harris Spring 2019

Final Exam

Page 2 of 12

[2] Consider a 512-word x 64-bit RAM. The RAM requires k bits of address and 2s bit
cells total. What are k and s?

k: ____________________
s: ____________________

[3] An IEEE half-precision floating point number is similar to an ordinary floating-point
number but has 10 bits of significand and 5 bits of exponent with a bias of 15.
Write -6.625 as a half-precision floating point number, and express your answer in
hexadecimal.

Number: ______________________

Page 3 of 12

How many Logic Elements does each of the following Verilog modules require to fit onto
your Cyclone V FPGA? Explain your reasoning.
module xor7(input logic [6:0] a,

 output logic y);

 assign y = a[0] ^ a[1] ^ a[2] ^ a[3] ^ a[4] ^ a[5] ^ a[6];

endmodule

[2] Logic Elements: ______________________

module lfsr(input logic clk,

 input logic reset,

 output logic q);

 logic state[9:0];

 always_ff @(posedge clk, posedge reset)

 if (reset) state <= 9’b0;

 else state <= {state[8:0], state[8]^state[4]};

endmodule

[2] Logic Elements: ______________________

module cmddec(input logic [24:21] instr,

 output logic isAND, isXOR, isSUB, isADD, isCMP);

 always_comb

 begin

 isAND = 0; isXOR = 0; isSUB = 0; isADD = 0; isCMP = 0;

 case (instr)

 4’b0000: isAND = 1;

 4’b0001: isXOR = 1;

 4’b0010: isSUB = 1;

 4’b0100: isADD = 1;

 4’b1010: isCMP = 1;

 endcase

 end

endmodule

[2] Logic Elements: ______________________

Page 4 of 12

[6] Write an assembly language program to find the position of the most significant ‘1’ bit
in a 32-bit word in R1. Your answer should be in the range of 0 (a ‘1’ only in the least
significant bit) to 31 (a 1 in the most significant bit). For example, if the word is
0000 0000 0000 0000 0000 0000 0001 0100
the answer should be 4, because bits 4 and 2 are both ‘1’ and bit 4 is the most significant.
If the word is all 0’s, return 32. Return your result in R0.

Page 5 of 12

The following program is supposed to sum an array of 10 ints. The base address of the
array is in R4, the sum is in R6, and the loop counter is in R5. The result is in R6.

MOV R5, #0

MOV R6, #0

LOOP

LDR R0, [R4, R5]

ADD R6, R6, R0

ADD R5, R5, #1

CMP R5, #10

BNE LOOP

DONE

[2] The program has one bug. Explain what the bug is.

[2] Mark up the code to fix the bug with as little change to the program as possible.

[3] How many cycles will the program take to run on a pipelined processor? Assume the
processor has the same hazards as the pipelined processor in class, but that it has been
enhance all of the instructions/modes needed for this program? Define the number of
cycles required to include fetching all of the instructions, but not waiting for the last
instructions in the pipeline to complete after the program reaches DONE. The number of
cycles should be the same in your fixed code as in the original; if not, count cycles based
on the original code. Explain your reasoning.

Cycles ________________

Page 6 of 12

Consider the following circuit.

[2] Draw a state transition diagram corresponding to the circuit.

[2] Give a simple explanation of when the circuit asserts BINGO.

[3] Write behavioral (not structural) Verilog code gracefully describing the circuit.

module final(input logic clk, reset,

 input logic A, B,

 output logic BINGO);

endmodule

Page 7 of 12

The ARM LDRB Rd, [Rn, imm] is like LDR but loads a single byte into the bottom
8 bits of a register and fills the upper 24 bits with zeros. Recall that ARM is a little-endian
architecture in which the least significant byte of a word is stored at the lowest address in
the word. Modify the ARM multicycle processor to support the LDRB instruction, using
as little additional hardware as feasible.

[3] Mark up the attached multicycle processor diagram and ALU to handle the new
instructions.
[2] Mark up the attached multicycle controller (including state transition diagram and truth
tables) to handle the new instructions.
[2] The attached multicycle memfile.s test code has highlighted modifications to test the
new instruction. As compared to the memfile.s from Lab 11, it changes the constant in the
ADDLT command at 0x40 from #1 to #255 and replaces the LDR instruction at 0x4C with
an LDRB.
Translate the LDRB command to machine language. Express your code in hexadecimal.
The format for a memory instruction is given below. The cond field for ALWAYS is 1110.
The six control bits are described in the table below.

LDRB R2, [R0, #237] _____________________

[1] Predict what value should be written to mem[248] at the last line of the program.

Predicted Value: _____________________

B.2 MEMORY INSTRUCTIONS
The most common memory instructions (LDR, STR, LDRB, and STRB) oper-
ate on words or bytes and are encoded with op = 01. Extra memory
instructions operating on halfwords or signed bytes are encoded with
op = 00 and have less flexibility generating Src2. The immediate offset
is only 8 bits and the register offset cannot be shifted. LDRB and LDRH
zero-extend the bits to fill a word, while LDRSB and LDRSH sign-extend
the bits. Also see memory indexing modes in Section 6.3.6.

Memory

cond op Rn Rd
31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Extra memory

cond op Rn Rd
31:28 27:26 25:20 19:16 15:12 6:5

Src2a00 0 L

funct

I = 1

I = 0

11:8

WIUP Src2b1 op2 1
11:8 3:07 4 imm87:4

3:0

imm83:0

11:8

0000

3:0

Rm

Immediate

Register

Immediate

Register

Figure B.3 Memory instruction encodings

Table B.3 Memory instructions

op B op2 L Name Description Operation

01 0 N/A 0 STR Rd, [Rn, ±Src2] Store Register Mem[Adr] ← Rd

01 0 N/A 1 LDR Rd, [Rn, ±Src2] Load Register Rd ← Mem[Adr]

01 1 N/A 0 STRB Rd, [Rn, ±Src2] Store Byte Mem[Adr] ← Rd7:0

01 1 N/A 1 LDRB Rd, [Rn, ±Src2] Load Byte Rd ← Mem[Adr]7:0

00 N/A 01 0 STRH Rd, [Rn, ±Src2] Store Halfword Mem[Adr] ← Rd15:0

00 N/A 01 1 LDRH Rd, [Rn, ±Src2] Load Halfword Rd ← Mem[Adr]15:0

00 N/A 10 1 LDRSB Rd, [Rn, ±Src2] Load Signed Byte Rd ← Mem[Adr]7:0

00 N/A 11 1 LDRSH Rd, [Rn, ±Src2] Load Signed Half Rd ← Mem[Adr]15:0

538 APPENDIX B ARM Instructions

before, cmd is 13 (11012), sh encodes the type of shift, Rm holds the value
to be shifted, and the shifted result is placed in Rd. This instruction uses
the register-shifted register addressing mode, where one register (Rm) is
shifted by the amount held in a second register (Rs). Because the least
significant 8 bits of Rs are used, Rm can be shifted by up to 255 positions.
For example, if Rs holds the value 0xF001001C, the shift amount is 0x1C
(28). A logical shift by more than 31 bits pushes all the bits off the end
and produces all 0's. Rotate is cyclical, so a rotate by 50 bits is equivalent
to a rotate by 18 bits.

6 . 4 . 2 Memory Instructions

Memory instructions use a format similar to that of data-processing
instructions, with the same six overall fields: cond, op, funct, Rn, Rd,
and Src2, as shown in Figure 6.22. However, memory instructions use a
different funct field encoding, have two variations of Src2, and use an
opof 012. Rn is the base register, Src2 holds the offset, and Rd is the des-
tination register in a load or the source register in a store. The offset is
either a 12-bit unsigned immediate (imm12) or a register (Rm) that is
optionally shifted by a constant (shamt5). funct is composed of six con-
trol bits: I, P, U, B, W, and L. The I (immediate) and U (add) bits deter-
mine whether the offset is an immediate or register and whether it should
be added or subtracted, according to Table 6.9. The P (pre-index) and W
(writeback) bits specify the index mode according to Table 6.10. The L
(load) and B (byte) bits specify the type of memory operation according
to Table 6.11.

Memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Immediate

Register

Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Table 6.9 Offset type control bits for memory instructions

Meaning
Bit I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Table 6.10 Index mode control
bits for memory instructions

P W Index Mode

0 0 Post-index

0 1 Not supported

1 0 Offset

1 1 Pre-index

Table 6.11 Memory operation type
control bits for memory instructions

L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

6.4 Machine Language 333

before, cmd is 13 (11012), sh encodes the type of shift, Rm holds the value
to be shifted, and the shifted result is placed in Rd. This instruction uses
the register-shifted register addressing mode, where one register (Rm) is
shifted by the amount held in a second register (Rs). Because the least
significant 8 bits of Rs are used, Rm can be shifted by up to 255 positions.
For example, if Rs holds the value 0xF001001C, the shift amount is 0x1C
(28). A logical shift by more than 31 bits pushes all the bits off the end
and produces all 0's. Rotate is cyclical, so a rotate by 50 bits is equivalent
to a rotate by 18 bits.

6 . 4 . 2 Memory Instructions

Memory instructions use a format similar to that of data-processing
instructions, with the same six overall fields: cond, op, funct, Rn, Rd,
and Src2, as shown in Figure 6.22. However, memory instructions use a
different funct field encoding, have two variations of Src2, and use an
opof 012. Rn is the base register, Src2 holds the offset, and Rd is the des-
tination register in a load or the source register in a store. The offset is
either a 12-bit unsigned immediate (imm12) or a register (Rm) that is
optionally shifted by a constant (shamt5). funct is composed of six con-
trol bits: I, P, U, B, W, and L. The I (immediate) and U (add) bits deter-
mine whether the offset is an immediate or register and whether it should
be added or subtracted, according to Table 6.9. The P (pre-index) and W
(writeback) bits specify the index mode according to Table 6.10. The L
(load) and B (byte) bits specify the type of memory operation according
to Table 6.11.

Memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Immediate

Register

Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Table 6.9 Offset type control bits for memory instructions

Meaning
Bit I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Table 6.10 Index mode control
bits for memory instructions

P W Index Mode

0 0 Post-index

0 1 Not supported

1 0 Offset

1 1 Pre-index

Table 6.11 Memory operation type
control bits for memory instructions

L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

6.4 Machine Language 333
before, cmd is 13 (11012), sh encodes the type of shift, Rm holds the value
to be shifted, and the shifted result is placed in Rd. This instruction uses
the register-shifted register addressing mode, where one register (Rm) is
shifted by the amount held in a second register (Rs). Because the least
significant 8 bits of Rs are used, Rm can be shifted by up to 255 positions.
For example, if Rs holds the value 0xF001001C, the shift amount is 0x1C
(28). A logical shift by more than 31 bits pushes all the bits off the end
and produces all 0's. Rotate is cyclical, so a rotate by 50 bits is equivalent
to a rotate by 18 bits.

6 . 4 . 2 Memory Instructions

Memory instructions use a format similar to that of data-processing
instructions, with the same six overall fields: cond, op, funct, Rn, Rd,
and Src2, as shown in Figure 6.22. However, memory instructions use a
different funct field encoding, have two variations of Src2, and use an
opof 012. Rn is the base register, Src2 holds the offset, and Rd is the des-
tination register in a load or the source register in a store. The offset is
either a 12-bit unsigned immediate (imm12) or a register (Rm) that is
optionally shifted by a constant (shamt5). funct is composed of six con-
trol bits: I, P, U, B, W, and L. The I (immediate) and U (add) bits deter-
mine whether the offset is an immediate or register and whether it should
be added or subtracted, according to Table 6.9. The P (pre-index) and W
(writeback) bits specify the index mode according to Table 6.10. The L
(load) and B (byte) bits specify the type of memory operation according
to Table 6.11.

Memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Immediate

Register

Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Table 6.9 Offset type control bits for memory instructions

Meaning
Bit I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Table 6.10 Index mode control
bits for memory instructions

P W Index Mode

0 0 Post-index

0 1 Not supported

1 0 Offset

1 1 Pre-index

Table 6.11 Memory operation type
control bits for memory instructions

L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

6.4 Machine Language 333

Page 8 of 12

Multicycle Processor

ALU

before sending it to PCWrite, RegWrite, and MemWrite so that updated
condition flags are not seen until the end of an instruction. The remainder
of this section develops the state transition diagram for the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following state
transition diagrams readable, only the relevant control signals are listed.
Select signals are listed only when their value matters; otherwise, they
are don’t care. Enable signals (RegW, MemW, IRWrite, and NextPC)
are listed only when they are asserted; otherwise, they are 0.

The first step for any instruction is to fetch the instruction frommemory
at the address held in the PC and to increment the PC to the next instruction.
The FSM enters this Fetch state on reset. The control signals are shown in
Figure 7.32. The data flow on this step is shown in Figure 7.33, with the
instruction fetch highlighted in blue and the PC increment highlighted
in gray. To read memory, AdrSrc= 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register, IR.
Meanwhile, the PC should be incremented by 4 to point to the next instruc-
tion. Because the ALU is not being used for anything else, the processor can

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
e

ad
D

a
ta

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

R
egS

rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1
0

0
1

Figure 7.30 Complete multicycle processor

414 CHAPTER SEVEN Microarchitecture

it to perform subtraction:A+B + 1=A−B.) IfALUControl= 10, the ALU
computes A AND B. If ALUControl= 11, the ALU performs AOR B.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. Figure 5.16 shows the ALU symbol
with a 4-bit ALUFlags output. As shown in the schematic of this ALU
in Figure 5.17, the ALUFlags output is composed of the N, Z, C, and V
flags that indicate, respectively, that the ALU output is negative or zero
or that the adder produced a carry out or overflowed. Recall that the
most significant bit of a two's complement number is 1 if it is negative
and 0 otherwise. Thus, the N flag is connected to the most significant
bit of the ALU output, Result31. The Z flag is asserted when all of the bits
of Result are 0, as detected by the N-bit NOR gate in Figure 5.17. The C
flag is asserted when the adder produces a carry out and the ALU is per-
forming addition or subtraction (ALUControl1= 0).

Overflow detection, as shown on the left side of Figure 5.17, is trickier.
Recall from Section 1.4.6 that overflow occurs when the addition of
two same signed numbers produces a result with the opposite sign.
So, V is asserted when all three of the following conditions are true: (1)
the ALU is performing addition or subtraction (ALUControl1= 0), (2)
A and Sum have opposite signs, as detected by the XOR gate, and, as

ALU

N N

N

2

A B

Result

ALUControl

4

ALUFlags
{N,Z,C,V}

Figure 5.16 ALU symbol with
output flags

+

00

A B

Cout

Result

01

A
LU

C
ontrol0

ALUControl

Sum

NN

N

N

N NNN

N

2
011011

Zero

ALUControl1

Result31

NegativeCarry

ALUControl0

A31

B31

ALUFlags
4

ZN VC

Sum31

oVerflow

Figure 5.17 N-bit ALU with output
flags

250 CHAPTER FIVE Digital Building Blocks

Page 9 of 12

Multicycle Controller

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite
RegWrite

PCWritePCS
NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
onditional Logic

Main
FSM

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW
RegW

4:0

NextPC
IRWrite

AdrSrc
ResultSrc1:0

ALUSrcB1:0

Instr
DecoderOp1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

Condition
C

heck

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o

ndE
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register
Enables

Multiplexer
Selects

C
LK

F
lag

W
rite

1:0

Figure 7.31 Multicycle control unit

7.4 Multicycle Processor 415

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch
Op = 10

LDR STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423

Page 10 of 12

; memfile.dat

MAIN
SUB R0, R15, R15 ; R0 = 0 1110 000 0010 0 1111 0000 0000 0000 1111 E04F000F 0x00
ADD R2, R0, #5 ; R2 = 5 1110 001 0100 0 0000 0010 0000 0000 0101 E2802005 0x04
ADD R3, R0, #12 ; R3 = 12 1110 001 0100 0 0000 0011 0000 0000 1100 E280300C 0x08
SUB R7, R3, #9 ; R7 = 3 1110 001 0010 0 0011 0111 0000 0000 1001 E2437009 0x0c
ORR R4, R7, R2 ; R4 = 3 OR 5 = 7 1110 000 1100 0 0111 0100 0000 0000 0010 E1874002 0x10
AND R5, R3, R4 ; R5 = 12 AND 7 = 4 1110 000 0000 0 0011 0101 0000 0000 0100 E0035004 0x14
ADD R5, R5, R4 ; R5 = 4 + 7 = 11 1110 000 0100 0 0101 0101 0000 0000 0100 E0855004 0x18
SUBS R5, R5, #10 ; R5 = 11 - 10 = 1 1110 001 0010 1 0101 0101 0000 0000 1010 E255500A 0x1c
SUBSGT R5, R5, #2 ; R5 = 1 - 2 = -1 1100 001 0010 1 0101 0101 0000 0000 0010 C2555002 0x20
ADD R5, R5, #12 ; R5 = -1 + 12 = 11 1110 001 0100 0 0101 0101 0000 0000 1100 E285500C 0x24
SUBS R8, R5, R7 ; R8 = 11 - 3 = 8 1110 000 0010 1 0101 1000 0000 0000 0111 E0558007 0x28
BEQ END ; not taken 0000 1010 0000 0000 0000 0000 0000 1100 0A00000F 0x2c
SUBS R8, R3, R4 ; R8 = 12 - 7 = 5 1110 000 0010 1 0011 1000 0000 0000 0100 E0538004 0x30
BGE AROUND ; should be taken 1010 1010 0000 0000 0000 0000 0000 0000 AA000000 0x34
ADD R5, R0, #0 ; should be skipped 1110 001 0100 0 0000 0101 0000 0000 0000 E2805000 0x38
AROUND
SUBS R8, R7, R2 ; R8 = 3 - 5 = -2 1110 000 0010 1 0111 1000 0000 0000 0010 E0578002 0x3c
ADDLT R7, R5, #255 ; R7 = 11+255=266 1011 001 0100 0 0101 0111 0000 1111 1111 B28570FF 0x40
SUB R7, R7, R2 ; R7 = 266-5= 261 1110 000 0010 0 0111 0111 0000 0000 0010 E0477002 0x44
STR R7, [R3, #224] ; mem[12+224] = 261 1110 010 1100 0 0011 0111 0000 0101 0100 E58370E0 0x48
LDRB R2, [R0, #237] ;
ADD R15, R15, R0 ; PC <- PC + 8 1110 000 0100 0 1111 1111 0000 0000 0000 E08FF000 0x50
ADD R2, R0, #14 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200E 0x54
B END ; always taken 1110 1010 0000 0000 0000 0000 0000 0001 EA000001 0x58
ADD R2, R0, #13 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200D 0x5C
ADD R2, R0, #10 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200A 0x60
END
STR R2, [R0, #248] ; mem[248] = ? 1110 010 1100 0 0000 0010 0000 1111 1000 E58020F8 0x64

use it to compute PC+ 4 at the same time that it fetches the instruction.
ALUSrcA= 1, so SrcA comes from the PC. ALUSrcB= 10, so SrcB is the
constant 4. ALUOp= 0, so the ALU produces ALUControl= 00 to make
the ALU add. To update the PC with PC+ 4, ResultSrc= 10 to choose the
ALUResult and NextPC= 1 to enable PCWrite.

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction Op Funct5 Funct0 RegSrc1 RegSrc0 ImmSrc1:0

LDR 01 X 1 X 0 01

STR 01 X 0 1 0 01

DP immediate 00 1 X X 0 00

DP register 00 0 X 0 0 00

B 10 X X X 1 10

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

Reset

Figure 7.32 Fetch

1
0

00
01
10

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

ReadData

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

0
1

R
egSrc19:16

15:12

23:0

3:0
15

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1 0 0 1 XX 0 XX 1 10 00 10

Figure 7.33 Data flow during the fetch step

416 CHAPTER SEVEN Microarchitecture

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture

Page 11 of 12

END OF WRITTEN PORTION OF EXAM

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE

COMPUTER PORTION.

Page 12 of 12

COMPUTER PORTION OF EXAM

Once you start this question, you may refer to the written portion of the exam, but may
not spend any more time on the written portion or change any of your answers on that
portion.

Modify your ARM multicycle processor from Lab 11 to support the LDRB instruction.
Modify your memfile.dat to replace the existing LDR instruction with the LDRB and to
change the ADDLT instruction’s highlighted in the earlier code.

[2] Print out your Verilog code and circle or highlight the lines you modified.

[4] Print out a simulation waveform showing at least the value being written to memory
location 248 on the last cycle. Circle this value in the waveform.

