
Page 1 of 18

This is a closed-book take-home exam. Electronic devices including calculators are not
allowed, except on the computer question on the last page. You are permitted two 8.5x11”
sheets of paper with notes.
You are bound by the HMC Honor Code while taking this exam.
The first part of the exam is written, while the final page is done on the computer based on
your E85 Lab 11. The entire Lab 11 that you use (including datapath and controller) must
be your own work; it cannot, for example, include somebody else’s controller. The exam
is intended to be doable in 3 hours if you have prepared adequately. However, there will
be no limit on the time you are allowed except that the written portion must be completed
in one contiguous block of time and the computer part must be completed in another
contiguous block of time. A contiguous block of time is a period of time working at a desk
without breaking for meals, naps, socializing, etc. Please manage your time wisely and do
not let the exam expand to take more time than is justified.
Return the exam to Sydney Torrey in the Engineering Department Office no later than
Friday 5/11 at noon (5/4 at 5 pm for seniors).
Alongside each question, the number of points is written in brackets. All work and answers
should be written directly on this examination booklet, except for printouts. Use the backs
of pages if necessary. Write neatly; illegible answers will be marked wrong. Show your
work for partial credit.

Name: ___

Do Not Write Below This Point
Page 2: ____________________ / 6
Pages 3-4: ____________________ / 12
Page 5: ____________________ / 6
Page 6: ____________________ / 3
Page 11: ____________________ / 6
Page 12: ____________________ / 3
Page 13-16: ____________________ / 8
Page 18: ____________________ / 6
Total: ____________________ / 50

Digital Electronics & Computer Engineering (E85)
 Harris Spring 2018

Final Exam

Page 2 of 18

[1] Give an expression for the maximum value of an int in C on a 32-bit microprocessor?

Maximum Value: ____________________

[2] Give the closest approximation to p that you can represent with an 8-bit two’s
complement fixed point number with four fractional bits. Express your result in
hexadecimal.

Approximation of p: ____________________

[3] Determine the decimal value of the IEEE single precision floating point number
C0C80000

Number: ______________________

Page 3 of 18

Consider the following “LFSR” circuit. Each flip-flop has a set input s to initialize its
output to 1 when reset is applied.

[1] Show the sequence of values q takes on for the next 10 cycles after the circuit is reset.

Cycle q

1

2

3

4

5

6

7

8

9

10

[2] Give a succinct description of the circuit in Verilog.

module lfsr(input logic clk, reset

 output logic q)

endmodule

Page 4 of 18

The XOR has a propagation delay of 20 ps and a contamination delay of 10 ps. It’s input
capacitance is 1 fF on each input pin and the leakage current is 10 nA. The flip-flop has a
clock-to-Q propagation delay of 25 ps and contamination delay of 16 ps. Its setup time is
9 ps and its hold time is 12 ps. It’s input capacitance is 0.667 fF on the D pin and 2 fF on
the CLK pin, and the leakage current is 30 nA. You also have buffers available with a
propagation delay of 8 ps and contamination delay of 6 ps. The power supply is 0.8 V.

[2] What is the fastest clock rate at which the LFSR circuit could operate in the absence of
skew?

Fastest Clock: _________________ (ps)

[2] What is the static power consumption Pstatic of the circuit?

Pstatic: _________________

[2] What is the dynamic power consumption of the circuit operating at 1 MHz Pdynamic-1MHz?

Pdynamic-1MHz: _________________

[1] Above what clock frequencies does the dynamic power consumption exceed the static
consumption? Give your answer in terms of Pstatic and Pdynamic-1MHz.

Frequency: _________________

[2] Mark up the circuit with minimum modifications necessary for the circuit to operate
correctly if the clock skew between flip-flops may be as much as 11 ps.

Page 5 of 18

[6] Translate the following function to ARM assembly language. str is passed in R0.
Remember that R1-R3 and R12 do not need to be saved or restored across a function call.

void toupper(char str[])
 int i = 0;

 while (str[i]) {
 if (str[i] > 96) str[i] = str[i] – 32;
 i++;
 }
}

Assembly language

Page 6 of 18

[3] Translate the following ARM assembly language into machine language. Refer to the
instruction encodings on the next page. Express your instructions in hexadecimal.

do Machine Language
 LDR R2, [R5, R6] _____________________________

 CMP R2, #42 _____________________________
 BLE do _____________________________

Page 7 of 18

Page 8 of 18

Page 9 of 18

The STM32 has a 12-bit analog-to-digital converter (ADC). To initialize the ADC:

• Enable the ADC clock in the Reset and Clock Control register.

• Turn on the ADC by setting the ADEN bit.

• Wait until the ADRDY flag is set to indicate the ADC is ready for conversion

• Write 111 to the SMP bits to run the sampling clock sufficiently slow.

To convert the voltage from channel n:

• Write a 1 to the CHSELn bit and 0s to other CHSEL bits to select channel n for
conversion.

• Start a conversion by setting the ADSTART bit

• Wait for the ADSTART bit to go low to indicate the conversion is complete

• Read the answer from the ADC_DR data register

Relevant register maps are given below:

Page 10 of 18

Page 11 of 18

[3] Complete the following function to initialize the ADC for a particular channel. The
clock enabling code is provided for you.
void adcInit(int channel) {

 volatile unsigned long *RCC_APB2ENR = (unsigned long*)0x40021018;

 // Enable ADC clock by writing 1 to ADCEN bit of RCC_APB2ENR

 *RCC_APB2ENR |= 1<<9;

}

[3] Complete the following function to read a value from a specified channel:
int analogRead(int channel) {

}

Page 12 of 18

Consider the 5-stage pipelined ARM processor with hazard unit from Chapter 7 running
the following program. Assume that it has been enhanced to support the MOV instruction.
The MOV instruction is issued on cycle 1.

MOV R3, #1

ADD R4, R3, #7

SUB R5, R3, R3

LDR R6, R3, R4

ADD R7, R6, R3

[1] What operation does the ALU perform on cycle 4? ______________

[1] What is the output of the ALU on cycle 5? ______________

[1] In which cycle is R7 written? ______________

Page 13 of 18

The ARM MOV Rd, Rn instruction copies the value from Rn into Rd. It is a data
processing instruction with a cmd field of 1101. MOVS does the same, and affects the N
and Z flags. Modify the ARM multicycle processor to support the MOV and MOVS
instructions, using as little additional hardware as feasible.

[3] Mark up the attached multicycle processor diagram and ALU to handle the new
instructions.

[2] Mark up the attached multicycle controller (including state transition diagram and truth
tables) to handle the new instructions.

[2] The attached multicycle memfile.s test code has highlighted modifications to test the
new instruction. Translate these three new lines of assembly to machine language. Express
your code in hexadecimal. The format for a data processing instruction is given below. The
cmd field for ORR is 1100 and the cond field for ALWAYS is 1110.

MOV R9, R2: _____________________
ORR R9, R9, #17: _____________________

MOV R2, R9: _____________________

[1] Predict what value should be written to mem[248] at the last line of the program.

Predicted Value: _____________________

Data-processing

cond op cmd Rn Rd
31:28 27:26 24:21 19:16 15:12 11:0 411:7 6:5

shshamt5 0

11:8

Rs sh
6:5

10
47

11:8

rot imm8
7:0

Src2 Rm

Rm

3:0

3:0

00 I
25

S
20

funct

I = 1

I = 0

Immediate

Register

Register-shifted
Register

Figure B.1 Data-processing instruction encodings

Table B.1 Data-processing instructions

cmd Name Description Operation

0000 AND Rd, Rn, Src2 Bitwise AND Rd ← Rn & Src2

0001 EOR Rd, Rn, Src2 Bitwise XOR Rd ← Rn ^ Src2

0010 SUB Rd, Rn, Src2 Subtract Rd ← Rn – Src2

0011 RSB Rd, Rn, Src2 Reverse Subtract Rd ← Src2 – Rn

0100 ADD Rd, Rn, Src2 Add Rd ← Rn+Src2

0101 ADC Rd, Rn, Src2 Add with Carry Rd ← Rn+Src2+C

0110 SBC Rd, Rn, Src2 Subtract with Carry Rd ← Rn – Src2 – C

0111 RSC Rd, Rn, Src2 Reverse Sub w/ Carry Rd ← Src2 – Rn – C

1000 (S = 1) TST Rd, Rn, Src2 Test Set flags based on Rn & Src2

1001 (S = 1) TEQ Rd, Rn, Src2 Test Equivalence Set flags based on Rn ^ Src2

1010 (S = 1) CMP Rn, Src2 Compare Set flags based on Rn – Src2

1011 (S = 1) CMN Rn, Src2 Compare Negative Set flags based on Rn+Src2

1100 ORR Rd, Rn, Src2 Bitwise OR Rd ← Rn | Src2

1101 Shifts:
I = 1 OR
(instr11:4 = 0)

MOV Rd, Src2 Move Rd ← Src2

I = 0 AND
(sh = 00;
instr11:4 ≠ 0)

LSL Rd, Rm, Rs/shamt5 Logical Shift Left Rd ← Rm << Src2

I = 0 AND
(sh = 01)

LSR Rd, Rm, Rs/shamt5 Logical Shift Right Rd ← Rm >> Src2

(continued)

536 APPENDIX B ARM Instructions

Page 14 of 18

Multicycle Processor

ALU

before sending it to PCWrite, RegWrite, and MemWrite so that updated
condition flags are not seen until the end of an instruction. The remainder
of this section develops the state transition diagram for the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following state
transition diagrams readable, only the relevant control signals are listed.
Select signals are listed only when their value matters; otherwise, they
are don’t care. Enable signals (RegW, MemW, IRWrite, and NextPC)
are listed only when they are asserted; otherwise, they are 0.

The first step for any instruction is to fetch the instruction frommemory
at the address held in the PC and to increment the PC to the next instruction.
The FSM enters this Fetch state on reset. The control signals are shown in
Figure 7.32. The data flow on this step is shown in Figure 7.33, with the
instruction fetch highlighted in blue and the PC increment highlighted
in gray. To read memory, AdrSrc= 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register, IR.
Meanwhile, the PC should be incremented by 4 to point to the next instruc-
tion. Because the ALU is not being used for anything else, the processor can

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
e

ad
D

a
ta

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

R
egS

rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1
0

0
1

Figure 7.30 Complete multicycle processor

414 CHAPTER SEVEN Microarchitecture

it to perform subtraction:A+B + 1=A−B.) IfALUControl= 10, the ALU
computes A AND B. If ALUControl= 11, the ALU performs AOR B.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. Figure 5.16 shows the ALU symbol
with a 4-bit ALUFlags output. As shown in the schematic of this ALU
in Figure 5.17, the ALUFlags output is composed of the N, Z, C, and V
flags that indicate, respectively, that the ALU output is negative or zero
or that the adder produced a carry out or overflowed. Recall that the
most significant bit of a two's complement number is 1 if it is negative
and 0 otherwise. Thus, the N flag is connected to the most significant
bit of the ALU output, Result31. The Z flag is asserted when all of the bits
of Result are 0, as detected by the N-bit NOR gate in Figure 5.17. The C
flag is asserted when the adder produces a carry out and the ALU is per-
forming addition or subtraction (ALUControl1= 0).

Overflow detection, as shown on the left side of Figure 5.17, is trickier.
Recall from Section 1.4.6 that overflow occurs when the addition of
two same signed numbers produces a result with the opposite sign.
So, V is asserted when all three of the following conditions are true: (1)
the ALU is performing addition or subtraction (ALUControl1= 0), (2)
A and Sum have opposite signs, as detected by the XOR gate, and, as

ALU

N N

N

2

A B

Result

ALUControl

4

ALUFlags
{N,Z,C,V}

Figure 5.16 ALU symbol with
output flags

+

00

A B

Cout

Result

01

A
LU

C
ontrol0

ALUControl

Sum

NN

N

N

N NNN

N

2
011011

Zero

ALUControl1

Result31

NegativeCarry

ALUControl0

A31

B31

ALUFlags
4

ZN VC

Sum31

oVerflow

Figure 5.17 N-bit ALU with output
flags

250 CHAPTER FIVE Digital Building Blocks

Page 15 of 18

Multicycle Controller

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite
RegWrite

PCWritePCS
NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
onditional Logic

Main
FSM

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW
RegW

4:0

NextPC
IRWrite

AdrSrc
ResultSrc1:0

ALUSrcB1:0

Instr
DecoderOp1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

Condition
C

heck

FlagW1:0

PCWrite

MemWrite

RegWrite

C
o

ndE
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register
Enables

Multiplexer
Selects

C
LK

F
lag

W
rite

1:0

Figure 7.31 Multicycle control unit

7.4 Multicycle Processor 415

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch
Op = 10

LDR STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423

Page 16 of 18

; memfile.dat

MAIN
SUB R0, R15, R15 ; R0 = 0 1110 000 0010 0 1111 0000 0000 0000 1111 E04F000F 0x00
ADD R2, R0, #5 ; R2 = 5 1110 001 0100 0 0000 0010 0000 0000 0101 E2802005 0x04
ADD R3, R0, #12 ; R3 = 12 1110 001 0100 0 0000 0011 0000 0000 1100 E280300C 0x08
SUB R7, R3, #9 ; R7 = 3 1110 001 0010 0 0011 0111 0000 0000 1001 E2437009 0x0c
ORR R4, R7, R2 ; R4 = 3 OR 5 = 7 1110 000 1100 0 0111 0100 0000 0000 0010 E1874002 0x10
AND R5, R3, R4 ; R5 = 12 AND 7 = 4 1110 000 0000 0 0011 0101 0000 0000 0100 E0035004 0x14
ADD R5, R5, R4 ; R5 = 4 + 7 = 11 1110 000 0100 0 0101 0101 0000 0000 0100 E0855004 0x18
SUBS R5, R5, #10 ; R5 = 11 - 10 = 1 1110 001 0010 1 0101 0101 0000 0000 1010 E255500A 0x1c
SUBSGT R5, R5, #2 ; R5 = 1 - 2 = -1 1100 001 0010 1 0101 0101 0000 0000 0010 C2555002 0x20
ADD R5, R5, #12 ; R5 = -1 + 12 = 11 1110 001 0100 0 0101 0101 0000 0000 1100 E285500C 0x24
SUBS R8, R5, R7 ; R8 = 11 - 3 = 8 1110 000 0010 1 0101 1000 0000 0000 0111 E0558007 0x28
BEQ END ; not taken 0000 1010 0000 0000 0000 0000 0000 1100 0A00000F 0x2c
SUBS R8, R3, R4 ; R8 = 12 - 7 = 5 1110 000 0010 1 0011 1000 0000 0000 0100 E0538004 0x30
BGE AROUND ; should be taken 1010 1010 0000 0000 0000 0000 0000 0000 AA000000 0x34
ADD R5, R0, #0 ; should be skipped 1110 001 0100 0 0000 0101 0000 0000 0000 E2805000 0x38
AROUND
SUBS R8, R7, R2 ; R8 = 3 - 5 = -2 1110 000 0010 1 0111 1000 0000 0000 0010 E0578002 0x3c
ADDLT R7, R5, #1 ; R7 = 11 + 1 = 12 1011 001 0100 0 0101 0111 0000 0000 0001 B2857001 0x40
SUB R7, R7, R2 ; R7 = 12 - 5 = 7 1110 000 0010 0 0111 0111 0000 0000 0010 E0477002 0x44
STR R7, [R3, #224] ; mem[12+224] = 7 1110 010 1100 0 0011 0111 0000 0101 0100 E58370E0 0x48
LDR R2, [R0, #236] ; R2 = mem[236] = 7 1110 010 1100 1 0000 0010 0000 0110 0000 E59020EC 0x4c
ADD R15, R15, R0 ; PC <- PC + 8 1110 000 0100 0 1111 1111 0000 0000 0000 E08FF000 0x50
ADD R2, R0, #14 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200E 0x54
MOV R9, R2
ORR R9, R9, #17
MOV R2, R9
B END ; always taken 1110 1010 0000 0000 0000 0000 0000 0001 EA000001 0x64
ADD R2, R0, #13 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200D 0x68
ADD R2, R0, #10 ; shouldn't happen 1110 001 0100 0 0000 0010 0000 0000 0001 E280200A 0x6C
END
STR R2, [R0, #248] ; mem[248] = ? 1110 010 1100 0 0000 0010 0000 1111 1000 E58020F8 0x70

use it to compute PC+ 4 at the same time that it fetches the instruction.
ALUSrcA= 1, so SrcA comes from the PC. ALUSrcB= 10, so SrcB is the
constant 4. ALUOp= 0, so the ALU produces ALUControl= 00 to make
the ALU add. To update the PC with PC+ 4, ResultSrc= 10 to choose the
ALUResult and NextPC= 1 to enable PCWrite.

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Instruction Op Funct5 Funct0 RegSrc1 RegSrc0 ImmSrc1:0

LDR 01 X 1 X 0 01

STR 01 X 0 1 0 01

DP immediate 00 1 X X 0 00

DP register 00 0 X 0 0 00

B 10 X X X 1 10

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

Reset

Figure 7.32 Fetch

1
0

00
01
10

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata

4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

ReadData

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

0
1

R
egSrc19:16

15:12

23:0

3:0
15

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1 0 0 1 XX 0 XX 1 10 00 10

Figure 7.33 Data flow during the fetch step

416 CHAPTER SEVEN Microarchitecture

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture

Page 17 of 18

END OF WRITTEN PORTION OF EXAM

DO NOT PROCEED PAST THIS POINT UNTIL YOU ARE PREPARED TO
CEASE ALL WORK ON THE WRITTEN PORTION AND MOVE ON TO THE

COMPUTER PORTION.

Page 18 of 18

COMPUTER PORTION OF EXAM

Once you start this question, you may refer to the written portion of the exam, but may
not spend any more time on the written portion or change any of your answers on that
portion.

Modify your ARM multicycle processor from Lab 11 to support the MOV instruction.
Modify your memfile.dat to add the three new lines of machine language code from the
previous question. Simulate your modified code.

[2] Print out your Verilog code and circle or highlight the lines you modified.

[4] Print out a simulation waveform showing at least the value being written to memory
location 248 on the last cycle. Circle this value in the waveform.

