E85 Digital Design \& Computer Engineering

Lecture 8: Arithmetic Circuits

Lecture 8

- Chapter 5 Introduction
- Arithmetic Circuits
- 1-bit Adders
- N-bit Adders
- Ripple Adders
- Carry Lookahead Adders
- Prefix Adders
- Subtractors
- Arithmetic/Logic Units

Application Software	$>$ hello world!"
Operating Systems	8
Architecture	昌早
Microarchitecture	$\square \longleftrightarrow \square$
Logic	
Digital Circuits	0
Analog Circuits	o-is
Devices	
Physics	

Chapter 5 Introduction

- Digital building blocks:
- Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
- Hierarchy of simpler components
- Well-defined interfaces and functions
- Regular structure easily extends to different sizes
- Will use these building blocks in Chapter 7 to build microprocessor

1-Bit Adders

Half
Adder

A	B	$C_{\text {out }}$	S
0	0		
0	1		
1	0		
1	1		

$$
\begin{aligned}
& \mathrm{S}= \\
& \mathrm{C}_{\text {out }}=-
\end{aligned}
$$

Full

Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$S=$
$\mathrm{C}_{\text {out }}=$

Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
- Ripple-carry (slow)
- Carry-lookahead (fast)
- Prefix
(faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Symbol

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$
t_{\text {ripple }}=N t_{F A}
$$

where $t_{F A}$ is the delay of a 1-bit full adder

Carry-Lookahead Adder

Compute $C_{\text {out }}$ for k-bit blocks using generate and propagate signals

Some definitions:

- Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
- Generate $\left(G_{i}\right)$ and propagate $\left(P_{i}\right)$ signals for each column:
- Generate: Column i will generate a carry out if A_{i} and B_{i} are both 1.

$$
G_{i}=
$$

- Propagate: Column i will propagate a carry in to the carry out if A_{i} or B_{i} is 1 .

$$
\boldsymbol{P}_{i}=
$$

- Carry out: The carry out of column $i\left(C_{i}\right)$ is:

$$
C_{i}=
$$

Block Propagate and Generate

Now use column Propagate and Generate signals to compute Block Propagate and Generate signals for k-bit blocks, i.e.:

- Compute if a k-bit group will propagate a carry in (to the block) to the carry out (of the block)
- Compute if a k-bit group will generate a carry out (of the block)

Block Propagate and Generate Signals

- Example: Block propagate and generate signals for 4-bit blocks ($P_{3: 0}$ and $G_{3: 0}$):

$$
\begin{aligned}
P_{3: 0} & =P_{3} P_{2} P_{1} P_{0} \\
G_{3: 0} & =G_{3}+G_{2} P_{3}+G_{1} P_{2} P_{3}+G_{0} P_{1} P_{2} P_{3} \\
& =G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}\right)\right.
\end{aligned}
$$

Block Propagate and Generate Signals

- In general for a block spanning bits i through j,

$$
\begin{aligned}
P_{i: j} & =P_{i} P_{i-1} P_{i-2} \ldots P_{j} \\
G_{i: j} & =G_{i}+P_{i}\left(G_{i-1}+P_{i-1}\left(G_{i-2}+P_{i-2} \ldots G_{j}\right)\right. \\
C_{i} & =G_{i: j}+P_{i: j} C_{j-1}
\end{aligned}
$$

32-bit CLA with 4-bit Blocks

Carry-Lookahead Addition

- Step 1: Compute G_{i} and P_{i} for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: $C_{i n}$ propagates through each k-bit propagate/generate logic (meanwhile computing sums)
- Step 4: Compute sum for most significant kbit block

Carry-Lookahead Addition

- Step 1: Compute G_{i} and P_{i} for all columns

$$
\begin{aligned}
& G_{i}=A_{i} B_{i} \\
& P_{i}=A_{i}+B_{i}
\end{aligned}
$$

Carry-Lookahead Addition

- Step 1: Compute G_{i} and P_{i} for all columns
- Step 2: Compute G and P for k-bit blocks

$$
\begin{aligned}
& P_{3: 0}=P_{3} P_{2} P_{1} P_{0} \\
& G_{3: 0}=G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}\right)\right.
\end{aligned}
$$

Carry-Lookahead Addition

- Step 1: Compute G_{i} and P_{i} for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: $C_{i n}$ propagates through each k-bit propagate/generate logic (meanwhile computing sums)

Carry-Lookahead Addition

- Step 1: Compute G_{i} and P_{i} for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: $C_{i n}$ propagates through each k-bit propagate/generate logic (meanwhile computing sums)
- Step 4: Compute sum for most significant kbit block

Carry-Lookahead Adder Delay

For N-bit CLA with k-bit blocks:

$$
t_{C L A}=t_{p g}+t_{p g_{-} b l o c k}+(N / k-1) t_{\mathrm{AND}_{-} \mathrm{OR}}+k t_{F A}
$$

- $t_{p g}$: delay to generate all P_{i}, G_{i}
- $t_{p g _ \text {block }}$: delay to generate all $P_{i: j}, G_{i: j}$
- $t_{\text {AND_or }}$: delay from $C_{\text {in }}$ to $C_{\text {out }}$ of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for $N>16$

Prefix Adder

- Computes carry in (C_{i-1}) for each column, then computes sum:

$$
S_{i}=\left(A_{i}^{\wedge} B_{i}\right) \perp C_{i-1}
$$

- Computes G and P for 1-, 2-, 4-, 8 -bit blocks, etc. until all G_{i} (carry in) known
- $\log _{2} N$ stages

Prefix Adder

- Carry in either generated in a column or propagated from a previous column.
- Column -1 holds $C_{i n}$, so

$$
G_{-1}=C_{\mathrm{in}}
$$

- Carry in to column $i=$ carry out of column $i-1$:

$$
C_{i-1}=G_{i-1:-1}
$$

$\boldsymbol{G}_{i-1:-1}$: generate signal spanning columns $i-1$ to -1

- Sum equation:

$$
S_{i}=\left(A_{i} \perp B_{i}\right) \perp G_{i-1:-1}
$$

- Goal: Quickly compute $\mathrm{G}_{0:-1}, \mathrm{G}_{1:-1}, \mathrm{G}_{2:-1}, \mathrm{G}_{3:-1}, \mathrm{G}_{4:-1}, \mathrm{G}_{5:-1}, \ldots$ (called prefixes) $\quad\left(=\mathrm{C}_{0}, \quad \mathrm{C}_{1}, \quad \mathrm{C}_{2}, \quad \mathrm{C}_{3}, \quad \mathrm{C}_{4}, \quad \mathrm{C}_{5}, \ldots\right)$

Prefix Adder

- Generate and propagate signals for a block spanning bits $i: j$

$$
\begin{aligned}
& G_{i: j}=G_{i: k}+P_{i: k} G_{k-1: j} \\
& P_{i: j}=P_{i: k} P_{k-1: j}
\end{aligned}
$$

- In words:
- Generate: block $i: j$ will generate a carry if:
- upper part ($i: k$) generates a carry or
- upper part ($i: k$) propagates a carry generated in lower part ($k-1: j$)
- Propagate: block $i: j$ will propagate a carry if both the upper and lower parts propagate the carry

16-Bit Prefix Adder Schematic

Prefix Adder Delay

$$
t_{P A}=t_{p g}+\log _{2} N\left(t_{p g_{-} \text {prefix }}\right)+t_{\mathrm{XOR}}
$$

$\boldsymbol{t}_{\boldsymbol{p g}}$: delay to produce P_{i}, G_{i} (AND or OR gate) $\boldsymbol{t}_{p g_{-} \text {prefix }}$: delay of black prefix cell (AND-OR gate)

Adder Delay Comparisons

Compare delay of: 32-bit ripple-carry, CLA, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay = 10 ps ; full adder delay $=30 \mathrm{ps}$

$$
\begin{aligned}
\boldsymbol{t}_{\text {ripple }} & =N t_{F A}=32(30 \mathrm{ps}) \\
& =960 \mathrm{ps} \\
& =t_{p g}+t_{p g _ \text {block }}+(N / k-1) t_{\mathrm{AND} _\mathrm{OR}}+k t_{F A} \\
\boldsymbol{t}_{\boldsymbol{C L A}} & =[10+60+(7) 20+4(30)] \mathrm{ps} \\
& =330 \mathrm{ps} \\
\boldsymbol{t}_{\boldsymbol{P A}} & =t_{p g}+\log _{2} N\left(t_{p g _ \text {prefix }}\right)+t_{\mathrm{XOR}} \\
& =\left[10+\log _{2} 32(20)+10\right] \mathrm{ps} \\
& =120 \mathrm{ps}
\end{aligned}
$$

Subtracter

Symbol

Implementation

$$
A \quad B
$$

Y

Comparator: Equality

Symbol

Implementation

A_{3}
B_{3}

Equal

Equal

A_{2}
$\mathrm{~B}_{2}$
$\mathrm{~A}_{1}$
$\mathrm{~B}_{1}$
A
B_{0}

Comparator: Less Than

ALU: Arithmetic Logic Unit

ALU should perform:

- Addition
- Subtraction
- AND
- OR

ALU: Arithmetic Logic Unit

ALUControl $_{1: 0}$	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A + B

ALUControl $=00$

Result $=A+B$

ALU: Arithmetic Logic Unit

ALUControl $_{1: 0}$	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B

ALU: Arithmetic Logic Unit

ALUControl $_{1: 0}$	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B
ALUControl $1: 0=11$
Mux selects output of OR gate as Result, so
Result $=\boldsymbol{A}$ OR B

ALU: Arithmetic Logic Unit

ALUControl $_{1: 0}$	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A + B

ALU: Arithmetic Logic Unit

ALUControl $_{1: 0}$	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A+B
ALUControl $1: 0=00$
ALUControl $_{0}=0$, so:
$\mathrm{C}_{\text {in }}$ to adder $=0$
$2^{\text {nd }}$ input to adder is B
Mux selects Sum as Result, so
Result $=\boldsymbol{A}+\boldsymbol{B}$

ALU with Status Flags

Flag	Description
N	Result is Negative
Z	Result is Zero
C	Adder produces Carry out
V	Adder oVerflowed

ALU with Status Flags

ALU with Status Flags: Negative

ALU with Status Flags: Zero

ALU with Status Flags: Carry

ALU with Status Flags: oVerflow

ALU with Status Flags: oVerflow

$V=1$ if:
ALU is performing addition or subtraction $\left(\right.$ ALUControl $\left._{1}=0\right)$

ALU with Status Flags: oVerflow

$V=1$ if:
ALU is performing addition or subtraction
$\left(\right.$ ALUControl $\left._{1}=0\right)$
AND
A and Sum have opposite signs

ALU with Status Flags: oVerflow

$V=1$ if:
ALU is performing addition or subtraction
$\left(\right.$ ALUControl $\left._{1}=0\right)$
AND
A and Sum have opposite signs
AND
A and B have same signs upon addition OR
A and B have different signs upon subtraction

ALU with Status Flags: oVerflow

$V=1$ if:
ALU is performing addition or subtraction
$\left(\right.$ ALUControl $\left._{1}=0\right)$
AND
A and Sum have opposite signs
AND
A and B have same signs upon addition $\left(\right.$ ALUControl $\left._{0}=0\right)$

OR
A and B have different signs upon subtraction $\left(\right.$ ALUControl $\left._{0}=1\right)$

