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Lecture 8

• Chapter 5 Introduction
• Arithmetic Circuits
– 1-bit Adders
– N-bit Adders
• Ripple Adders
• Carry Lookahead Adders
• Prefix Adders

– Subtractors
– Arithmetic/Logic Units
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• Digital building blocks:
– Gates, multiplexers, decoders, registers, 

arithmetic circuits, counters, memory arrays, 
logic arrays

• Building blocks demonstrate hierarchy, 
modularity, and regularity:
– Hierarchy of simpler components
– Well-defined interfaces and functions
– Regular structure easily extends to different sizes

• Will use these building blocks in Chapter 
7 to build microprocessor

Chapter 5 Introduction
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• Types of carry propagate adders (CPAs):
– Ripple-carry (slow)
– Carry-lookahead (fast)
– Prefix (faster)

• Carry-lookahead and prefix adders faster for large 
adders but require more hardware              

Symbol

Multibit Adders (CPAs)
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• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder
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tripple = NtFA
where tFA is the delay of a 1-bit full adder

Ripple-Carry Adder Delay
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Compute Cout for k-bit blocks using generate and propagate signals
Some definitions:
– Column i produces a carry out by either generating a carry out or 

propagating a carry in to the carry out
– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai and Bi are both 1. 

Gi = Ai Bi
• Propagate: Column i will propagate a carry in to the carry out if Ai or Bi is 1.

Pi = Ai  + Bi
• Carry out: The carry out of column i (Ci) is:

Ci = Ai Bi + (Ai  + Bi )Ci-1 = Gi + Pi Ci-1

Carry-Lookahead Adder
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Now use column Propagate and Generate signals to 
compute Block Propagate and Generate signals for 
k-bit blocks, i.e.:
• Compute if a k-bit group will propagate a carry in (to the block) 

to the carry out (of the block)
• Compute if a k-bit group will generate a carry out (of the 

block)

Block Propagate and Generate
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• Example: Block propagate and generate 

signals for 4-bit blocks (P3:0 and G3:0):

P3:0 = P3P2 P1P0

G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3

= G3 + P3 (G2 + P2 (G1 + P1G0 )

Block Propagate and Generate Signals
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• In general for a block spanning bits i through j,
Pi:j = PiPi-1 Pi-2 … Pj

Gi:j = Gi + Pi (Gi-1 + Pi-1 (Gi-2 + Pi-2 … Gj )
Ci = Gi:j + Pi:j Cj-1

Block Propagate and Generate Signals
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• Step 1: Compute Gi and Pi for all columns 
• Step 2: Compute G and P for k-bit blocks
• Step 3: Cin propagates through each k-bit 

propagate/generate logic (meanwhile 
computing sums)

• Step 4: Compute sum for most significant k-
bit block

Carry-Lookahead Addition



Lecture 8 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• Step 1: Compute Gi and Pi for all columns 

Carry-Lookahead Addition

Gi = Ai Bi

Pi = Ai  + Bi
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• Step 1: Compute Gi and Pi for all columns 

• Step 2: Compute G and P for k-bit blocks

Carry-Lookahead Addition

P3:0 = P3P2 P1P0

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )
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• Step 1: Compute Gi and Pi for all columns 
• Step 2: Compute G and P for k-bit blocks
• Step 3: Cin propagates through each k-bit 

propagate/generate logic (meanwhile 
computing sums)

Carry-Lookahead Addition
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• Step 1: Compute Gi and Pi for all columns 
• Step 2: Compute G and P for k-bit blocks
• Step 3: Cin propagates through each k-bit 

propagate/generate logic (meanwhile 
computing sums)

• Step 4: Compute sum for most significant k-
bit block

Carry-Lookahead Addition
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For N-bit CLA with k-bit blocks:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi
– tpg_block : delay to generate all Pi:j, Gi:j
– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a 
ripple-carry adder for N > 16

Carry-Lookahead Adder Delay
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• Computes carry in (Ci-1) for each column, then 
computes sum:

Si = (Ai ^ Bi) ^ Ci-1
• Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc. 

until all Gi (carry in) known
• log2N stages

Prefix Adder
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• Carry in either generated in a column or propagated from a 

previous column.

• Column -1 holds Cin, so 

G-1 = Cin

• Carry in to column i = carry out of column i-1: 

Ci-1 = Gi-1:-1

Gi-1:-1: generate signal spanning columns i-1 to -1

• Sum equation:

Si = (Ai ^ Bi) ^ Gi-1:-1

• Goal: Quickly compute G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1, … 
(called prefixes)         (= C0,    C1,     C2,    C3,    C4,    C5, …)

Prefix Adder
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• Generate and propagate signals for a block spanning bits i:j
Gi:j = Gi:k + Pi:k Gk-1:j

Pi:j = Pi:kPk-1:j
• In words:

– Generate: block i:j will generate a carry if:
• upper part (i:k) generates a carry or 
• upper part (i:k) propagates a carry generated in 

lower part (k-1:j)
– Propagate: block i:j will propagate a carry if both the 

upper and lower parts propagate the carry

Prefix Adder
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16-Bit Prefix Adder Schematic
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tPA = tpg + log2N(tpg_prefix ) + tXOR

tpg: delay to produce Pi, Gi (AND or OR gate)
tpg_prefix: delay of black prefix cell (AND-OR gate)

Prefix Adder Delay
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Compare delay of: 32-bit ripple-carry, CLA, and prefix adders
• CLA has 4-bit blocks

• 2-input gate delay = 10 ps; full adder delay = 30 ps

tripple = NtFA = 32(30 ps) 
= 960 ps

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

= [10 + 60 + (7)20 + 4(30)] ps
= 330 ps

tPA = tpg + log2N(tpg_prefix ) + tXOR

= [10 + log232(20) + 10] ps
= 120 ps

Adder Delay Comparisons
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Symbol Implementation
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Symbol Implementation
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ALU should perform:
• Addition
• Subtraction
• AND
• OR

ALU: Arithmetic Logic Unit
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ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A + B
ALUControl = 00
Result = A + B
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ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A OR B
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ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A OR B
ALUControl1:0 = 11
Mux selects output of OR gate as Result, so
Result = A OR B
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ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A + B
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ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A + B
ALUControl1:0 = 00
ALUControl0 = 0, so:

Cin to adder = 0
2nd input to adder is B

Mux selects Sum as Result, so
Result = A + B
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Flag Description
N Result is Negative

Z Result is Zero

C Adder produces Carry out

V Adder oVerflowed

ALU with Status Flags
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ALU with Status Flags
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ALU with Status Flags: Negative
N = 1 if:
Result is negative
So, N is connected to 
most significant bit of 
Result
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ALU with Status Flags: Zero
Z = 1 if:
all of the bits of Result
are 0
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ALU with Status Flags: Carry
C = 1 if:

Cout of Adder is 1

AND
ALU is adding or 
subtracting (ALUControl
is 00 or 01)
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ALU with Status Flags: oVerflow
V = 1 if:
The addition of 2 same-
signed numbers 
produces a result with 
the opposite sign
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ALU with Status Flags: oVerflow
V = 1 if:
ALU is performing addition or subtraction
(ALUControl1 = 0)
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ALU with Status Flags: oVerflow
V = 1 if:
ALU is performing addition or subtraction
(ALUControl1 = 0)
AND
A and Sum have opposite signs
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ALU with Status Flags: oVerflow
V = 1 if:
ALU is performing addition or subtraction
(ALUControl1 = 0)
AND
A and Sum have opposite signs
AND
A and B have same signs upon addition OR
A and B have different signs upon subtraction
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ALU with Status Flags: oVerflow

V = 1 if:

ALU is performing addition or subtraction

(ALUControl1 = 0)

AND
A and Sum have opposite signs

AND
A and B have same signs upon addition 
(ALUControl0 = 0)                                           OR 
A and B have different signs upon subtraction

(ALUControl0 = 1)


