
Lecture 8:
Arithmetic Circuits

E85 Digital Design & Computer Engineering

Lecture 8 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 8

• Chapter 5 Introduction
• Arithmetic Circuits
– 1-bit Adders
– N-bit Adders
• Ripple Adders
• Carry Lookahead Adders
• Prefix Adders

– Subtractors
– Arithmetic/Logic Units

Lecture 8 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Digital building blocks:
– Gates, multiplexers, decoders, registers,

arithmetic circuits, counters, memory arrays,
logic arrays

• Building blocks demonstrate hierarchy,
modularity, and regularity:
– Hierarchy of simpler components
– Well-defined interfaces and functions
– Regular structure easily extends to different sizes

• Will use these building blocks in Chapter
7 to build microprocessor

Chapter 5 Introduction

Lecture 8 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout
0
0
0
1

S = A Å B
Cout = AB

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

0
1
1
0

SCout
0
0
0
1

S = A Å B Å Cin
Cout = AB + ACin + BCin

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

1
0
0
1

0
1
1
1

A B

S

Cout Cin+

1-Bit Adders

Lecture 8 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

A B

S

Cout Cin+
N

NN

• Types of carry propagate adders (CPAs):
– Ripple-carry (slow)
– Carry-lookahead (fast)
– Prefix (faster)

• Carry-lookahead and prefix adders faster for large
adders but require more hardware

Symbol

Multibit Adders (CPAs)

Lecture 8 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0

C30 C29 C1 C0
Cout ++++

A31 B31

Cin

• Chain 1-bit adders together

• Carry ripples through entire chain

• Disadvantage: slow

Ripple-Carry Adder

Lecture 8 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

tripple = NtFA
where tFA is the delay of a 1-bit full adder

Ripple-Carry Adder Delay

Lecture 8 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

Compute Cout for k-bit blocks using generate and propagate signals
Some definitions:
– Column i produces a carry out by either generating a carry out or

propagating a carry in to the carry out
– Generate (Gi) and propagate (Pi) signals for each column:

• Generate: Column i will generate a carry out if Ai and Bi are both 1.

Gi = Ai Bi
• Propagate: Column i will propagate a carry in to the carry out if Ai or Bi is 1.

Pi = Ai + Bi
• Carry out: The carry out of column i (Ci) is:

Ci = Ai Bi + (Ai + Bi)Ci-1 = Gi + Pi Ci-1

Carry-Lookahead Adder

Lecture 8 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Now use column Propagate and Generate signals to
compute Block Propagate and Generate signals for
k-bit blocks, i.e.:
• Compute if a k-bit group will propagate a carry in (to the block)

to the carry out (of the block)
• Compute if a k-bit group will generate a carry out (of the

block)

Block Propagate and Generate

Lecture 8 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Block propagate and generate

signals for 4-bit blocks (P3:0 and G3:0):

P3:0 = P3P2 P1P0

G3:0 = G3 + G2P3 + G1P2P3 + G0P1P2P3

= G3 + P3 (G2 + P2 (G1 + P1G0)

Block Propagate and Generate Signals

Lecture 8 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

• In general for a block spanning bits i through j,
Pi:j = PiPi-1 Pi-2 … Pj

Gi:j = Gi + Pi (Gi-1 + Pi-1 (Gi-2 + Pi-2 … Gj)
Ci = Gi:j + Pi:j Cj-1

Block Propagate and Generate Signals

Lecture 8 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

B0

++++

P3:0

G3
P3
G2
P2
G1
P1
G0

P3
P2
P1
P0

G3:0

Cin

Cout

A0

S0

C0

B1 A1

S1

C1

B2 A2

S2

C2

B3 A3

S3

Cin

A3:0B3:0

S3:0

4-bit CLA
Block Cin

A7:4B7:4

S7:4

4-bit CLA
Block

C3C7

A27:24B27:24

S27:24

4-bit CLA
Block

C23

A31:28B31:28

S31:28

4-bit CLA
Block

C27Cout

32-bit CLA with 4-bit Blocks

Lecture 8 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

• Step 1: Compute Gi and Pi for all columns
• Step 2: Compute G and P for k-bit blocks
• Step 3: Cin propagates through each k-bit

propagate/generate logic (meanwhile
computing sums)

• Step 4: Compute sum for most significant k-
bit block

Carry-Lookahead Addition

Lecture 8 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• Step 1: Compute Gi and Pi for all columns

Carry-Lookahead Addition

Gi = Ai Bi

Pi = Ai + Bi

Lecture 8 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• Step 1: Compute Gi and Pi for all columns

• Step 2: Compute G and P for k-bit blocks

Carry-Lookahead Addition

P3:0 = P3P2 P1P0

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0)

Lecture 8 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

• Step 1: Compute Gi and Pi for all columns
• Step 2: Compute G and P for k-bit blocks
• Step 3: Cin propagates through each k-bit

propagate/generate logic (meanwhile
computing sums)

Carry-Lookahead Addition

A3:0B3:0

S3:0

4-bit CLA
Block Cin

A7:4B7:4

S7:4

4-bit CLA
Block

C3C7

A27:24B27:24

S27:24

4-bit CLA
Block

C23

A31:28B31:28

S31:28

4-bit CLA
Block

C27Cout

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

Lecture 8 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

• Step 1: Compute Gi and Pi for all columns
• Step 2: Compute G and P for k-bit blocks
• Step 3: Cin propagates through each k-bit

propagate/generate logic (meanwhile
computing sums)

• Step 4: Compute sum for most significant k-
bit block

Carry-Lookahead Addition

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

B0
++++

P3:0

G3P3G2P2G1P1G0
P3P2P1P0

G3:0

Cin
Cout

A0

S0

C0
B1 A1

S1

C1
B2 A2

S2

C2
B3 A3

S3
Cin

Lecture 8 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

For N-bit CLA with k-bit blocks:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi
– tpg_block : delay to generate all Pi:j, Gi:j
– tAND_OR : delay from Cin to Cout of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a
ripple-carry adder for N > 16

Carry-Lookahead Adder Delay

Lecture 8 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

• Computes carry in (Ci-1) for each column, then
computes sum:

Si = (Ai ^ Bi) ^ Ci-1
• Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc.

until all Gi (carry in) known
• log2N stages

Prefix Adder

Lecture 8 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

• Carry in either generated in a column or propagated from a

previous column.

• Column -1 holds Cin, so

G-1 = Cin

• Carry in to column i = carry out of column i-1:

Ci-1 = Gi-1:-1

Gi-1:-1: generate signal spanning columns i-1 to -1

• Sum equation:

Si = (Ai ^ Bi) ^ Gi-1:-1

• Goal: Quickly compute G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1, …
(called prefixes) (= C0, C1, C2, C3, C4, C5, …)

Prefix Adder

Lecture 8 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

• Generate and propagate signals for a block spanning bits i:j
Gi:j = Gi:k + Pi:k Gk-1:j

Pi:j = Pi:kPk-1:j
• In words:

– Generate: block i:j will generate a carry if:
• upper part (i:k) generates a carry or
• upper part (i:k) propagates a carry generated in

lower part (k-1:j)
– Propagate: block i:j will propagate a carry if both the

upper and lower parts propagate the carry

Prefix Adder

Lecture 8 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

16-Bit Prefix Adder Schematic

0:-1

-1

2:1

1:-12:-1

012

4:3

3

6:5

5:36:3

456

5:-16:-1 3:-14:-1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

Gk-1:jPk-1:jGi:kPi:k

Gi:jPi:j

BiAi

Gi:iPi:i

i

i:j

BiAiGi-1:-1

Si

i

Lecture 8 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

tPA = tpg + log2N(tpg_prefix) + tXOR

tpg: delay to produce Pi, Gi (AND or OR gate)
tpg_prefix: delay of black prefix cell (AND-OR gate)

Prefix Adder Delay

Lecture 8 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Compare delay of: 32-bit ripple-carry, CLA, and prefix adders
• CLA has 4-bit blocks

• 2-input gate delay = 10 ps; full adder delay = 30 ps

tripple = NtFA = 32(30 ps)
= 960 ps

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

= [10 + 60 + (7)20 + 4(30)] ps
= 330 ps

tPA = tpg + log2N(tpg_prefix) + tXOR

= [10 + log232(20) + 10] ps
= 120 ps

Adder Delay Comparisons

Lecture 8 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Symbol Implementation

+

A B

-

Y
Y

A B

NN

N

N N

N

N

Subtracter

Lecture 8 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

Symbol Implementation
A3
B3
A2
B2
A1
B1
A0
B0

Equal=

A B

Equal

44

Comparator: Equality

Lecture 8 <27> Digital Design and Computer Architecture: ARM® Edition © 2015 5-<27>

A < B

-

BA

[N-1]

N

N N

Comparator: Less Than

Lecture 8 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU should perform:
• Addition
• Subtraction
• AND
• OR

ALU: Arithmetic Logic Unit

Lecture 8 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A + B
ALUControl = 00
Result = A + B

Lecture 8 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A OR B

Lecture 8 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A OR B
ALUControl1:0 = 11
Mux selects output of OR gate as Result, so
Result = A OR B

Lecture 8 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A + B

Lecture 8 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU: Arithmetic Logic Unit
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Example: Perform A + B
ALUControl1:0 = 00
ALUControl0 = 0, so:

Cin to adder = 0
2nd input to adder is B

Mux selects Sum as Result, so
Result = A + B

Lecture 8 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

Flag Description
N Result is Negative

Z Result is Zero

C Adder produces Carry out

V Adder oVerflowed

ALU with Status Flags

Lecture 8 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags

Lecture 8 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: Negative
N = 1 if:
Result is negative
So, N is connected to
most significant bit of
Result

Lecture 8 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: Zero
Z = 1 if:
all of the bits of Result
are 0

Lecture 8 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: Carry
C = 1 if:

Cout of Adder is 1

AND
ALU is adding or
subtracting (ALUControl
is 00 or 01)

Lecture 8 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: oVerflow
V = 1 if:
The addition of 2 same-
signed numbers
produces a result with
the opposite sign

Lecture 8 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: oVerflow
V = 1 if:
ALU is performing addition or subtraction
(ALUControl1 = 0)

Lecture 8 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: oVerflow
V = 1 if:
ALU is performing addition or subtraction
(ALUControl1 = 0)
AND
A and Sum have opposite signs

Lecture 8 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: oVerflow
V = 1 if:
ALU is performing addition or subtraction
(ALUControl1 = 0)
AND
A and Sum have opposite signs
AND
A and B have same signs upon addition OR
A and B have different signs upon subtraction

Lecture 8 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

ALU with Status Flags: oVerflow

V = 1 if:

ALU is performing addition or subtraction

(ALUControl1 = 0)

AND
A and Sum have opposite signs

AND
A and B have same signs upon addition
(ALUControl0 = 0) OR
A and B have different signs upon subtraction

(ALUControl0 = 1)

