
Lecture 3:
Timing &
Sequential Circuits

E85 Digital Design & Computer Engineering

Lecture 3 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

• Timing
• Sequential Circuits
• Latches and Flip-Flops
• Synchronous Logic Design

Lecture 3

Lecture 3 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

inputs outputs
functional spec

timing spec

Introduction

Lecture 3 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

A

Y

Time

delay

A Y

• Delay: time between input change and output
changing

• How to build fast circuits?

Timing

Lecture 3 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

A

Y

Time

A Y

tpd

tcd

• Propagation delay: tpd = max delay from input to output

• Contamination delay: tcd = min delay from input to
output

Propagation & Contamination Delay

Lecture 3 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Delay is caused by
– Capacitance and resistance in a circuit
– Speed of light limitation

• Reasons why tpd and tcd may be different:
– Different rising and falling delays
– Multiple inputs and outputs, some of which are

faster than others
– Circuits slow down when hot and speed up when

cold

Propagation & Contamination Delay

Lecture 3 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

C

D Y

Critical Path

Short Path

n1
n2

Critical (Long) Path: tpd = 2tpd_AND + tpd_OR

Short Path: tcd = tcd_AND

Critical (Long) & Short Paths

Lecture 3 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: 8-input OR Delay

• Find the minimum and maximum delay of
this 8-input OR

Cell Propagation Delay (ps) Contamination Delay (ps)
OR2 20 15
OR3 25 19
OR4 35 28

Lecture 3 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Solution: 8-input OR Delay

• Find the minimum and maximum delay of

this 8-input OR

• Annotate each node with earliest and latest arrivals

• Min = 15 ps from A7 to Y.

• Max = 140 ps from A0 to Y.

Cell Propagation Delay (ps) Contamination Delay (ps)
OR2 20 15

OR3 25 19

OR4 35 28

Lecture 3 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: Optimized 8-input OR

• Redesign the 8-input OR to be as fast as
possible.

Cell Propagation Delay (ps) Contamination Delay (ps)
OR2 20 15
OR3 25 19
OR4 35 28

Lecture 3 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: Optimized 8-input OR

• Redesign the 8-input OR to be as fast as
possible.

• Try various possibilities:

Cell Propagation Delay (ps) Contamination Delay (ps)
OR2 20 15
OR3 25 19
OR4 35 28

Lecture 3 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Solution: Optimized 8-input OR

• Redesign the 8-input OR to be as fast as
possible.

• Annotate delays. OR3+OR3 is fastest (50 ps).

Cell Propagation Delay (ps) Contamination Delay (ps)
OR2 20 15
OR3 25 19
OR4 35 28

Lecture 3 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

• Outputs of sequential logic depend on current

and prior input values – it has memory.

• Some definitions:

– State: all the information about past inputs

necessary to explain its future behavior

– Latches and flip-flops: state elements that store

one bit of state

– Synchronous sequential circuits: combinational

logic followed by a bank of flip-flops

Sequential Logic Introduction

Lecture 3 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• Give sequence to events
• Have memory (short-term)
• Use feedback from output to input to store

information

Sequential Circuits

Lecture 3 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• The state of a circuit influences its future
behavior

• State elements store state
– Bistable circuit
– SR Latch
– D Latch
– D Flip-flop

State Elements

Lecture 3 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

QQ Q

Q

I1

I2

I2 I1

• Fundamental building block of other state
elements

• Two outputs: Q, Q
• No inputs

Bistable Circuit

Lecture 3 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

Q

Q

I1

I2

0

1

1

0

Q

Q

I1

I2

1

0

0

1

• Consider the two possible cases:
– Q = 0:

then Q = 0, Q = 1 (consistent)

– Q = 1:
then Q = 1, Q = 0 (consistent)

• Stores 1 bit of state in the state variable, Q (or Q)

• But there are no inputs to control the state

Bistable Circuit Analysis

Lecture 3 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

R

S

Q

Q

N1

N2

• SR Latch

• Consider the four possible cases:

– S = 1, R = 0
– S = 0, R = 1
– S = 0, R = 0
– S = 1, R = 1

SR (Set/Reset) Latch

Lecture 3 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

– S = 1, R = 0:
then Q = 1 and Q = 0
Set the output

– S = 0, R = 1:
then Q = 0 and Q = 1
Reset the output

SR Latch Analysis

R

S

Q

Q

N1

N2

1

0

0

10

1

R

S

Q

Q

N1

N2

0

1

1

00

0

11

Lecture 3 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

R

S

Q

Q

N1

N2

0

0

R

S

Q

Q

N1

N2

0

0

0

Qprev = 0 Qprev = 1– S = 0, R = 0:
then Q = Qprev
Memory!

– S = 1, R = 1:
then Q = 0, Q = 0
Invalid State
Q ≠ NOT Q

SR Latch Analysis

R

S

Q

Q

N1

N2

1

1

0

00

0

1

Lecture 3 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

S

R Q

Q

SR Latch
Symbol

• SR stands for Set/Reset Latch
– Stores one bit of state (Q)

• Control what value is being stored with S, R
inputs
– Set: Make the output 1

(S = 1, R = 0, Q = 1)
– Reset: Make the output 0

(S = 0, R = 1, Q = 0)
• Avoid invalid state

(when S = R = 1)

SR Latch Symbol

Lecture 3 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

D Latch
Symbol

CLK
D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes
– D (the data input): controls what the output changes to

• Function
– When CLK = 1,

D passes through to Q (transparent)
– When CLK = 0,

Q holds its previous value (opaque)
• Avoids invalid case when

Q ≠ NOT Q

D Latch

Lecture 3 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

S

R Q

Q

Q

QD

CLK
D

R

S

CLK
D Q

Q

S R Q
0 0 Qprev
0 1 0
1 0 1

Q

1
0

CLK D
0 X
1 0
1 1

D
X
1
0

Qprev

D Latch Internal Circuit

Lecture 3 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

D Flip-Flop
Symbols

D Q
Q

• Inputs: CLK, D
• Function

– Samples D on rising edge of CLK
• When CLK rises from 0 to 1, D

passes through to Q
• Otherwise, Q holds its previous

value
– Q changes only on rising edge of CLK

• Called edge-triggered
• Activated on the clock edge

D Flip-Flop

Lecture 3 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

• Two back-to-back latches (L1 and L2) controlled by

complementary clocks

• When CLK = 0
– L1 is transparent

– L2 is opaque

– D passes through to N1

• When CLK = 1
– L2 is transparent

– L1 is opaque

– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0 1)

– D passes through to Q

D Flip-Flop Internal Circuit

Lecture 3 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

D

Q (latch)

Q (flop)

D Latch vs. D Flip-Flop
CLK
D Q

Q
D Q

Q

Lecture 3 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

Registers: Multi-bit Flip-Flop

Lecture 3 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

Internal
Circuit

D Q

CLKEN

D
Q

0

1
D Q
EN

Symbol

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1: D passes through to Q on the clock edge

– EN = 0: the flip-flop retains its previous state

Enabled Flip-Flops

Lecture 3 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

Symbols

D Q
Reset

r

• Inputs: CLK, D, Reset
• Function:

– Reset = 1: Q is forced to 0

– Reset = 0: flip-flop behaves as ordinary D flip-flop

Resettable Flip-Flops

Lecture 3 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

• Two types:
– Synchronous: resets at the clock edge only
– Asynchronous: resets immediately when Reset = 1

• Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

• Synchronously resettable flip-flop?

Resettable Flip-Flops

Lecture 3 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

Resettable Flip-Flops

Internal
Circuit

D Q

CLK

D QReset

• Two types:
– Synchronous: resets at the clock edge only

– Asynchronous: resets immediately when Reset = 1

• Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

• Synchronously resettable flip-flop

Lecture 3 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

Symbols

D Q
Set

s

• Inputs: CLK, D, Set
• Function:

– Set = 1: Q is set to 1
– Set = 0: the flip-flop behaves as ordinary D flip-flop

Settable Flip-Flops

Lecture 3 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

X Y Z

• Sequential circuits: all circuits that aren’t
combinational

• A problematic circuit:

• No inputs and 1-3 outputs
• Astable circuit, oscillates
• Period depends on inverter delay
• It has a cyclic path: output fed back to input

Sequential Logic

X
Y
Z

time (ns)0 1 2 3 4 5 6 7 8

Lecture 3 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multi-input XOR: Odd parity

SystemVerilog Description

module flop(input logic clk, d,
output logic q);

always_ff @(posedge clk)
q <= d;

endmodule

Lecture 3 <35> Digital Design and Computer Architecture: ARM® Edition © 2015
• Multi-input XOR: Odd parity

SystemVerilog Description
module flopenr(input logic clk, en, reset, d,

output logic q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else if (en) q <= d;

endmodule

Lecture 3 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multi-input XOR: Odd parity

SystemVerilog Description

module flopenr #(parameter WIDTH = 4)
(input logic clk, reset, en,
input logic [WIDTH-1:0] d,
output logic [WIDTH-1:0] q);

always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else if (en) q <= d;

endmodule

Lecture 3 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

• Breaks cyclic paths by inserting registers
• Registers contain state of the system

• State changes at clock edge: system synchronized to the
clock

• Rules of synchronous sequential circuit composition:
– Every circuit element is either a register or a combinational circuit

– At least one circuit element is a register
– All registers receive the same clock signal

– Every cyclic path contains at least one register

• Two common synchronous sequential circuits
– Finite State Machines (FSMs)
– Pipelines

Synchronous Sequential Logic Design

