
Lecture 20:
Single Cycle
Processor Controller

E85 Digital Design & Computer Engineering

Lecture 20 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single Cycle Processor Controller

Lecture 20

Lecture 20 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle ARM Processor

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0

1

0

1

R
eg
S
rc

Lecture 20 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Lecture 20 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Sent directly
to datapath

Lecture 20 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Sent through
Conditional Logic
first, then to
datapath

Sent directly
to datapath

Lecture 20 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control
• These signals change the

state (PC, RF, Memory)

• If instruction shouldn’t
execute, forced to 0

Sent through
Conditional Logic
first, then to
datapath

Sent directly
to datapath

Lecture 20 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

• FlagW1:0: Flag Write signal,

asserted when ALUFlags
should be saved (i.e., on

instruction with S=1)

Lecture 20 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

• FlagW1:0: Flag Write signal,

asserted when ALUFlags
should be saved (i.e., on

instruction with S=1)

• ADD, SUB update all flags

(NZCV)

• AND, ORR only update NZ
flags

Lecture 20 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

• FlagW1:0: Flag Write signal,
asserted when ALUFlags
should be saved (i.e., on
instruction with S=1)

• ADD, SUB update all flags
(NZCV)

• AND, ORR only update NZ
flags

• So, two bits needed:
FlagW1 = 1: NZ saved
(ALUFlags3:2 saved)
FlagW0 = 1: CV saved
(ALUFlags1:0 saved)

Lecture 20 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Lecture 20 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Lecture 20 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Single-Cycle Control: Decoder

Lecture 20 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Single-Cycle Control: Decoder

Lecture 20 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

O
p

Funct5

Funct0

Type

B
ranch

M
em
toR
eg

M
em
W

A
L
U
Src

Im
m
Src

R
egW

R
egSrc

A
L
U
O
p

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Control Unit: Main Decoder

Lecture 20 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Lecture 20 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

Review: ALU

Lecture 20 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: ALU

Lecture 20 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Lecture 20 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

ALUOp Funct4:1
(cmd)

Funct0
(S)

Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 00

1 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

Control Unit: ALU Decoder

• FlagW1 = 1: NZ (Flags3:2) should be saved
• FlagW0 = 1: CV (Flags1:0) should be saved

Lecture 20 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Decoder

Submodules:
• Main Decoder
• ALU Decoder
• PC Logic

Lecture 20 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

PCS = 1 if PC is written by an instruction or branch (B):
PCS = ((Rd == 15) & RegW) | Branch

Single-Cycle Control: PC Logic

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0

1

0

1

R
eg
S
rc

If instruction is executed: PCSrc = PCS
Else PCSrc = 0 (i.e., PC = PC + 4)

Lecture 20 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control

Lecture 20 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Cond. Logic

Lecture 20 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic

Function:
1. Check if instruction should execute (if not, force

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)

Lecture 20 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic

Function:
1. Check if instruction should execute (if not, force

PCSrc, RegWrite, and MemWrite to 0)
2. Possibly update Status Register (Flags3:0)

Lecture 20 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

Single-Cycle Control: Conditional Logic

Lecture 20 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic: Conditional Execution

Depending on condition mnemonic (Cond3:0) and condition flags
(Flags3:0) the instruction is executed (CondEx = 1)

Lecture 20 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

Depending on condition mnemonic (Cond3:0) and condition flags
(Flags3:0) the instruction is executed (CondEx = 1)

Flags3:0 is the
status register

Conditional Logic: Conditional Execution

Lecture 20 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: Condition Mnemonics

Other data-processing instructions will set the condition flags when the
instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ

1101 LE Signed less than or equal Z OR ðN⊕VÞ

1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307

Lecture 20 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: AND R1, R2, R3
Cond3:0=1110 (unconditional) => CondEx = 1

Flags3:0 = NZCV

Conditional Logic: Conditional Execution

Lecture 20 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: EOREQ R5, R6, R7
Cond3:0=0000 (EQ): if Flags = x1xx => CondEx = 1

Flags3:0 = NZCV

Conditional Logic: Conditional Execution

Lecture 20 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic

Function:
1. Check if instruction should execute (if not, force

PCSrc, RegWrite, and MemWrite to 0)

2. Possibly update Status Register (Flags3:0)

Lecture 20 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

Flags3:0 updated (with ALUFlags3:0) if:
• FlagW is 1 (i.e., the instruction’s S-bit is 1) AND
• CondEx is 1 (the instruction should be executed)

Flags3:0 = NZCV

Conditional Logic: Update (Set) Flags

Lecture 20 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

Recall:
• ADD, SUB update

all Flags
• AND, OR update

NZ only
• So Flags status

register has two
write enables:
FlagW1:0

Conditional Logic: Update (Set) Flags

Lecture 20 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

ALUOp Funct4:1
(cmd)

Funct0
(S)

Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 00

1 0100 0 ADD 00 00

1 11

0010 0 SUB 01 00

1 11

0000 0 AND 10 00

1 10

1100 0 ORR 11 00

1 10

Review: ALU Decoder

• FlagW1 = 1: NZ (Flags3:2) should be saved
• FlagW0 = 1: CV (Flags1:0) should be saved

Lecture 20 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic: Update (Set) Flags

All Flags
updated

Example: SUBS R5, R6, R7
FlagW1:0 = 11 AND CondEx = 1 (unconditional) => FlagWrite1:0 = 11

Lecture 20 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

Conditional Logic: Update (Set) Flags

Flags3:0 = NZCV

• Only Flags3:2
updated

• i.e., only NZ
Flags

updated

Example: ANDS R7, R1, R3
FlagW1:0 = 10 AND CondEx = 1 (unconditional) => FlagWrite1:0 = 10

Lecture 20 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: ORR

O
p

Funct5

Funct0

Type
B
ranch

M
em
toR
eg

M
em
W

A
L
U
Src

Im
m
Src

R
egW

R
egSrc

A
L
U
O
p

00 0 X DP Reg 0 0 0 0 XX 1 00 1

Lecture 20 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: ORR

Lecture 20 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

Lecture 20 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

No change to datapath

Lecture 20 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP

Lecture 20 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: CMP
ALUOp Funct4:1

(cmd)
Funct0

(S)
Type ALUControl1:0 FlagW1:0 NoWrite

0 X X Not DP 00 00 0

1 0100 0 ADD 00 00 0

1 11 0

0010 0 SUB 01 00 0

1 11 0

0000 0 AND 10 00 0

1 10 0

1100 0 ORR 11 00 0

1 10 0

1010 1 CMP 01 11 1

Lecture 20 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

Extended Functionality: Shifted Register

cond op cmd rn rd

Field Values
31:28 27:26 24:21 19:16 15:12

0
I

25

S

20

14 0 4 0 2 7
shshamt5

0
rm

411:7 6:5 3:0

5 012 12

Assembly Code

ADD R7, R2, R12, LSR #5

Lecture 20 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

No change to controller

Extended Functionality: Shifted Register

Lecture 20 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

Program Execution Time
= (#instructions)(cycles/instruction)(seconds/cycle)

= # instructions x CPI x TC

Review: Processor Performance

Lecture 20 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

TC limited by critical path (LDR)

Single-Cycle Performance

Lecture 20 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

• Single-cycle critical path:
Tc1 = tpcq_PC + tmem + tdec +

max[tmux + tRFread, tsext + tmux] +
tALU + tmem + tmux + tRFsetup

• Typically, limiting paths are:
– memory, ALU, register file
– Tc1 = tpcq_PC + 2tmem + tdec + tRFread + tALU + 2tmux +
tRFsetup

Single-Cycle Performance

Lecture 20 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40
Register setup tsetup 50
Multiplexer tmux 25
ALU tALU 120
Decoder tdec 70
Memory read tmem 200
Register file read tRFread 100

Register file setup tRFsetup 60

Tc1 = ?

Single-Cycle Performance Example

Lecture 20 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

Tc1 = tpcq_PC + 2tmem + tdec+ tRFread + tALU + 2tmux + tRFsetup

= [40 + 2(200) + 70 + 100 + 120 + 2(25) + 60] ps
= 840 ps

Single-Cycle Performance Example
Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40
Register setup tsetup 50
Multiplexer tmux 25
ALU tALU 120
Decoder tdec 70
Memory read tmem 200
Register file read tRFread 100

Register file setup tRFsetup 60

Lecture 20 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

Program with 100 billion instructions:

Execution Time = # instructions x CPI x TC
= (100 × 109)(1)(840 × 10-12 s)
= 84 seconds

Single-Cycle Performance Example

