

Lecture 2

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks

Lecture 2 <2>

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lecture 2 <3>

Circuits

- Nodes
 - Inputs: A, B, C
 - Outputs: Y, Z
 - Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <4>

Types of Logic Circuits

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs

Sequential Logic

- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to *exactly one* output
- The circuit contains no cyclic paths
- Example:

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <6>

Boolean Equations

- Functional specification of outputs in terms of inputs
- **Example:** $S = F(A, B, C_{in})$

$$C_{\rm out} = F(A, B, C_{\rm in})$$

 $S = A \oplus B \oplus C_{in}$ $C_{out} = AB + AC_{in} + BC_{in}$

Some Definitions

- Complement: variable with a bar over it
 A, B, C
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables
 ABC, ABC, ABC
- Maxterm: sum that includes all input variables
 (A+B+C), (A+B+C), (A+B+C)

- All equations can be written in SOP form
- Each row has a **minterm**

				minterm
Α	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	ĀB	m_1°
1	0	0	AB	m_2
1	1	1	ΑB	m_3
	A 0 0 1 1	A B 0 0 0 1 1 0 1 1	ABY000011100111	ABYminterm000A B011A B100A B11A B

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	ĀB	m_1°
1	0	0	AB	m_2
1	1	1	ΑB	m_3

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	Ā B	m_1°
1	0	0	AB	m_2
1	1	1	ΑB	m_3

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

				minterm
A	B	Y	minterm	name
0	0	0	A B	m_0
0	1	1	Ā B	m_1
1	0	0	AB	m_2
1	1	1	АB	m_3

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

	A	В	Y	minterm	minterm name
	0	0	0	A B	m_0
	0	1	1	Ā B	$\tilde{m_1}$
	1	0	0	A B	m_2
	1	1	1	ΑB	$\overline{m_3}$
Y	=	F(A. 1	B) =	$\overline{A}B + AB$	$=\Sigma(1,3)$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is **FALSE** for that row (and only that row)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3^2

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is **FALSE** for that row (and only that row)
- Form function by ANDing maxterms where output is **0**
- Thus, a product (AND) of sums (OR terms)

				maxterm
Α	B	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
(1	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3
= F(/	4, <i>B</i>)	= (A	$(A + B)(\overline{A} + \overline{A})$	$B)=\Pi(0,2)$
	A 0 1 1 = F (2	$ \begin{array}{c ccc} A & B \\ \hline 0 & 0 \\ 0 & 1 \\ \hline 1 & 0 \\ 1 & 1 \\ = F(A, B) \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B Y maxterm 0 0 0 A + B 0 1 1 A + B 1 0 0 \overline{A} + B 1 0 0 \overline{A} + B 1 1 \overline{A} + B F(A, B) = (A + B)(A + B)(A + B)

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (\overline{E})
 - If it's not open (\overline{O}) or
 - If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).
 O
 C
 E

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (\overline{O}) or
 - If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).
 O
 C
 E

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <18>

SOP & POS Form

SOP – sum-of-products

0	С	E	minterm
0	0		$\overline{O} \overline{C}$
0	1		O C
1	0		$O\overline{C}$
1	1		ΟC

PO	S –	proc	luct-	of-sums
_	0	С	Е	maxterm
	0	0		0 + C
	0	1		$O + \overline{C}$
	1	0		<u> </u>
	1	1		$\overline{O} + \overline{C}$

SOP & POS Form

SOP – sum-of-products

0	С	Ε	minterm
0	0	0	
0	1	0	O C
(1	0	1	$O\overline{C}$
1	1	0	ΟC

 $E = O\overline{C}$ $=\Sigma(2)$

POS – product-of-sums Ε maxterm С 0 $\left(\right)$ $\left(\right)$ \bigcirc + $\overline{\mathbb{C}}$ 0 0 +Ο + $\overline{\bigcirc}$ $\left(\right)$ 1 1 \bigcirc 1 0 +

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$
$$= \Pi(0, 1, 3)$$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <20>

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 ANDs and ORs, O's and 1's interchanged

Boolean Axioms

Number	Axiom	Name
A1	B = 0 if B ≠ 1	Binary Field
A2	$\overline{0} = 1$	NOT
A3	$0 \bullet 0 = 0$	AND/OR
A4	1 • 1 = 1	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	AND/OR

Boolean Axioms

Number	Axiom	Name
A1	B = 0 if B ≠ 1	Binary Field
A2	$\overline{0} = 1$	NOT
A3	$0 \bullet 0 = 0$	AND/OR
A4	1 • 1 = 1	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	AND/OR

Dual: Replace: • with + 0 with 1

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <23>

Boolean Axioms

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	$\overline{0} = 1$	1 = 0	NOT
A3	$0 \bullet 0 = 0$	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	1 + 0 = 0 + 1 = 1	AND/OR

Dual: Replace: • with + 0 with 1

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
Т3	$B \bullet B = B$	Idempotency
T4	B = B	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
Т3	$B \bullet B = B$	Idempotency
T4	¯¯B = B	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Dual: Replace: • with + 0 with 1

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <26>

Boolean Theorems of One Variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	B = B		Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with + 0 with 1

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <27>

T1: Identity Theorem

- $\mathbf{B} \cdot \mathbf{1} = \mathbf{B}$
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

T1: Identity Theorem

- $\mathbf{B} \cdot \mathbf{1} = \mathbf{B}$
- $\mathbf{B} + \mathbf{0} = \mathbf{B}$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 < 29>

T2: Null Element Theorem

- $\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$
- B + 1 = 1

T2: Null Element Theorem

- $\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$
- B + 1 = 1

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <31>

T3: Idempotency Theorem

- $\mathbf{B} \bullet \mathbf{B} = \mathbf{B}$
- B + B = B

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <32>

T3: Idempotency Theorem

- $\mathbf{B} \cdot \mathbf{B} = \mathbf{B}$
- B + B = B

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <33>

T4: Identity Theorem

• $\stackrel{=}{B} = B$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <34>

T4: Identity Theorem

• $\stackrel{=}{B} = B$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <35>

T5: Complement Theorem

- $\mathbf{B} \cdot \mathbf{\overline{B}} = \mathbf{0}$
- $B + \overline{B} = 1$

T5: Complement Theorem

•
$$\mathbf{B} \cdot \mathbf{B} = 0$$

• $B + \overline{B} = 1$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <37>

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
Т9	B● (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

How do we prove these are true?

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <39>

How to Prove

- Method 1: Perfect induction
- Method 2: Use other theorems and axioms to simplify the equation
 - Make one side of the equation look like the other

Proof by Perfect Induction

- Also called: proof by exhaustion
- Check every possible input value
- If two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

В	C	ВС	СВ	
0	0			
0	1			
1	0			
1	1			

Example: Proof by Perfect Induction

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutativity

В	С	BC	СВ	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	1	1	

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <43>

T7: Associativity

Number	Theorem	Name
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <44>

T8: Distributivity

Number	Theorem	Name
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <45>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <46>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

В	C	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 1: Perfect Induction

B	С	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <51>

Number	Theorem	Name
Т9	B● (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

B•C

- = **B** + B●C
- $= B \bullet (1 + C)$ $= B \bullet (1)$

= B

- T8: Distributivity
- T3: Idempotency
- T8: Distributivity
- T2: Null element
- T1: Identity

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <52>

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet C) = B$	Combining

Prove true using other axioms and theorems:

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <53>

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet C) = B$	Combining

Prove true using other axioms and theorems:

 $B \bullet C + B \bullet \overline{C} = B \bullet (C + \overline{C})$ T8: Distributivity = $B \bullet (1)$ T5': Complements = B T1: Identity

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lect

Lecture 2 <54>

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <55>

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Dual: Replace: • with + 0 with 1

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <56>

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (•)

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	$B + (C \bullet D) = (B+C) (B+D)$	Distributivity
Т9	B • (B+C) = B	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Axioms and theorems are useful for *simplifying* equations.

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <58>

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <59>

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

Implicant: product of literals
 ABC, AC, BC

Literal: variable or its complement
 A, A, B, B, C, C

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

Implicant: product of literals
 ABC, AC, BC

Literal: variable or its complement
 A, A, B, B, C, C

Also called *minimizing* the equation

Simplification methods

- Distributivity (T8, T8')
 B (C+D) = BC + BD
 B + CD = (B+ C)(B+D)
- **Covering (T9')** A + AP = A
- **Combining (T10)** $P\overline{A} + PA = P$

Simplification methods

- Distributivity (T8, T8')
 B (C+D) = BC + BD
 B + CD = (B+ C)(B+D)
- **Covering (T9')** A + AP = A
- **Combining (T10)** $P\overline{A} + PA = P$
- **Expansion** $P = P\overline{A} + PA$

$$A = A + AP$$

• Duplication A = A + A

Simplification methods

- Distributivity (T8, T8')
 B (C+D) = BC + BD
 B + CD = (B+ C)(B+D)
- **Covering (T9')** A + AP = A
- **Combining (T10)** $P\overline{A} + PA = P$
- **Expansion** $P = P\overline{A} + PA$

$$A = A + AP$$

- **Duplication** A = A + A
- "Simplification" theorem $\overline{PA} + A = P + A$ $PA + \overline{A} = P + \overline{A}$

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove using other theorems and axioms:

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove using other theorems and axioms:

$$B \bullet C + \overline{B} \bullet D + C \bullet D$$

= BC + BD + (CDB+CDB)
= BC + BD + BCD+BCD
= BC + BCD + BD + BCD
= (BC + BCD) + (BD + BCD)
= BC + BD

T10: Combining

- **T6: Commutativity**
- **T6: Commutativity**
- **T7: Associativity**
- **T9': Covering**

Example 1:

 $Y = AB + A\overline{B}$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <67>

Example 1:

- $Y = AB + A\overline{B}$
 - Y = A T10: Combining

or

 $= A(B + \overline{B})$ T8: Distributivity= A(1)T5': Complements= AT1: Identity

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <68>

Example 2:

Y = A(AB + ABC)

Example 2: Y = A(AB + ABC)= A(AB(1 + C))= A(AB(1))= A(AB)= (AA)B= AB

T8: DistributivityT2': Null ElementT1: IdentityT7: AssociativityT3: Idempotency

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <70>

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2} = \overline{B_0} + \overline{B_1} + \overline{B_2}$	DeMorgan's Theorem

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <71>

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{B_0 \bullet B_1 \bullet B_2} = \overline{B_0} + \overline{B_1} + \overline{B_2}$	DeMorgan's Theorem

The **complement** of the **product** is the **sum** of the **complements**

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <72>

DeMorgan's Theorem: Dual

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	$B_0 + B_1 + B_2 =$	DeMorgan's
	$\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

The complement of the product is the sum of the complements.

Dual: The complement of the sum is the product of the complements.

$$Y = (A + \overline{BD})\overline{C}$$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <74>

$$Y = (A + \overline{BD})\overline{C}$$
$$= (\overline{A} + \overline{\overline{BD}}) + \overline{\overline{C}}$$
$$= (\overline{A} \bullet (\overline{\overline{BD}})) + C$$
$$= (\overline{A} \bullet (BD)) + C$$
$$= \overline{ABD} + C$$

 $Y = (\overline{ACE} + \overline{D}) + B$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <76>

$$Y = (\overline{ACE} + \overline{D}) + B$$
$$= (\overline{ACE} + \overline{D}) \bullet \overline{B}$$
$$= (\overline{ACE} \bullet \overline{D}) \bullet \overline{B}$$
$$= ((\overline{AC} + \overline{E}) \bullet D) \bullet \overline{B}$$
$$= ((AC + \overline{E}) \bullet D) \bullet \overline{B}$$
$$= (ACD + D\overline{E}) \bullet \overline{B}$$
$$= A\overline{B}CD + \overline{B}D\overline{E}$$

DeMorgan's Theorem

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <78>

Bubble Pushing

• Backward:

- Body changes
- Adds bubbles to inputs

• Forward:

- Body changes
- Adds bubble to output

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <79>

Bubble Pushing

• What is the Boolean expression for this circuit?

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <80>

Bubble Pushing

• What is the Boolean expression for this circuit?

Y = AB + CD

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <81>

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <82>

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <83>

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <84>

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing *without* a dot make no connection

Multiple-Output Circuits

• Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lec

Lecture 2 <90>

Multiple-Output Circuits

• Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y ₁	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lecture 2 <91>

Priority Circuit Hardware

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <92>

Don't Cares

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <93>

Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

• Warnings:

- Contention usually indicates a **bug**.
- X is used for "don't care" and contention look at the context to tell them apart.

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between

A voltmeter won't indicate whether a node is floating

Tristate Buffer

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <96>

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- $PA + P\overline{A} = P$

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <97>

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

K-Map Definitions

- Complement: variable with a bar over it
 A, B, C
- Literal: variable or its complement
 Ā, *A*, *B*, *B*, *C*, *C*
- Implicant: product of literals
 ABC, AC, BC
- **Prime implicant:** implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

Digital Design and Computer Architecture: ARM[®] Edition © 2015 Lecture 2 <100>

4-Input K-Map

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <101>

4-Input K-Map

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Y						
CDA	B 00	01	11	10		
00	1	0	0	1		
01	0	1	0	1		
11	1	1	0	0		
10	1	1	0	1		

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <102>

4-Input K-Map

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <103>

K-Maps with Don't Cares

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <104>

10

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	X

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <105>

K-Maps with Don't Cares

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <106>

Combinational Building Blocks

- Multiplexers
- Decoders

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

Multiplexer Implementations

Logic gates

Sum-of-products form

• Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <109>

Logic using Multiplexers

Using mux as a lookup table

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Logic using Multiplexers

Reducing the size of the mux

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <111>

Decoders

- *N* inputs, 2^{*N*} outputs
- One-hot outputs: only one output HIGH at once

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Decoder Implementation

Digital Design and Computer Architecture: ARM[®] Edition © 2015

Lecture 2 <113>

Logic Using Decoders

OR minterms

Digital Design and Computer Architecture: ARM[®] Edition © 2015

