
Lecture 2:
Combinational Logic
Design

E85 Digital Design & Computer Engineering

Lecture 2 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

• Introduction
• Boolean Equations
• Boolean Algebra
• From Logic to Gates
• Multilevel Combinational Logic
• X’s and Z’s, Oh My
• Karnaugh Maps
• Combinational Building Blocks

Lecture 2

Lecture 2 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

inputs outputs
functional spec

timing spec

Introduction

Lecture 2 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

• Nodes
– Inputs: A, B, C
– Outputs: Y, Z
– Internal: n1

• Circuit elements
– E1, E2, E3
– Each a circuit

A E1

E2
E3B

C

n1

Y

Z

Circuits

Lecture 2 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• Combinational Logic
– Memoryless
– Outputs determined by current values of inputs

• Sequential Logic
– Has memory
– Outputs determined by previous and current values

of inputs

inputs outputs
functional spec

timing spec

Types of Logic Circuits

Lecture 2 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Every element is combinational
• Every node is either an input or connects

to exactly one output
• The circuit contains no cyclic paths
• Example:

Rules of Combinational Composition

Lecture 2 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

• Functional specification of outputs in terms
of inputs

• Example: S = F(A, B, Cin)
Cout = F(A, B, Cin)

A S

S = A Å B Å Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Boolean Equations

Lecture 2 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

• Complement: variable with a bar over it
A, B, C

• Literal: variable or its complement
A, A, B, B, C, C

• Implicant: product of literals
ABC, AC, BC

• Minterm: product that includes all input variables
ABC, ABC, ABC

• Maxterm: sum that includes all input variables
(A+B+C), (A+B+C), (A+B+C)

Some Definitions

Lecture 2 <9> Digital Design and Computer Architecture: ARM® Edition © 2015Y = F(A, B) =

Sum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

• All equations can be written in SOP form
• Each row has a minterm

Lecture 2 <10> Digital Design and Computer Architecture: ARM® Edition © 2015Y = F(A, B) =

Sum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)

Lecture 2 <11> Digital Design and Computer Architecture: ARM® Edition © 2015Y = F(A, B) =

Sum-of-Products (SOP) Form

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Lecture 2 <12> Digital Design and Computer Architecture: ARM® Edition © 2015Y = F(A, B) =

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

Sum-of-Products (SOP) Form
• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Lecture 2 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = F(A, B) = AB + AB = Σ(1, 3)

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

minterm
name
m0
m1
m2
m3

• All equations can be written in SOP form
• Each row has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• Form function by ORing minterms where output is 1
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) Form

Lecture 2 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• All Boolean equations can be written in POS form
• Each row has a maxterm

Product-of-Sums (POS) Form

A + B
A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Lecture 2 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• All Boolean equations can be written in POS form

• Each row has a maxterm
• A maxterm is a sum (OR) of literals

• Each maxterm is FALSE for that row (and only that row)

Product-of-Sums (POS) Form

A + B
A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Lecture 2 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = F(A, B) = (A + B)(A + B) = Π(0, 2)

• All Boolean equations can be written in POS form
• Each row has a maxterm
• A maxterm is a sum (OR) of literals
• Each maxterm is FALSE for that row (and only that row)
• Form function by ANDing maxterms where output is 0
• Thus, a product (AND) of sums (OR terms)

Product-of-Sums (POS) Form

A + B
A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

maxterm
name
M0
M1
M2
M3

Lecture 2 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

O C E
0 0
0 1
1 0
1 1

Boolean Equations Example

• You are going to the cafeteria for lunch

– You won’t eat lunch (E)

– If it’s not open (O) or

– If they only serve corndogs (C)

• Write a truth table for determining if you

will eat lunch (E).

Lecture 2 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• You are going to the cafeteria for lunch

– You won’t eat lunch (E)

– If it’s not open (O) or

– If they only serve corndogs (C)

• Write a truth table for determining if you

will eat lunch (E). O C E
0 0
0 1
1 0
1 1

0
0
1
0

Boolean Equations Example

Lecture 2 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

SOP & POS Form
SOP – sum-of-products

POS – product-of-sums

O C E
0 0
0 1
1 0
1 1

minterm
O C
O C
O C
O C

O + C
O C E
0 0
0 1
1 0
1 1

maxterm

O + C
O + C
O + C

Lecture 2 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

O + C
O C E
0 0
0 1
1 0
1 1

0
0
1
0

maxterm

O + C
O + C
O + C

O C E
0 0
0 1
1 0
1 1

0
0
1
0

minterm

O C
O C
O C

O C

E = (O + C)(O + C)(O + C)
= Π(0, 1, 3)

E = OC
= Σ(2)

SOP & POS Form
SOP – sum-of-products

POS – product-of-sums

Lecture 2 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

• Axioms and theorems to simplify Boolean
equations

• Like regular algebra, but simpler: variables
have only two values (1 or 0)

• Duality in axioms and theorems:

–ANDs and ORs, 0’s and 1’s interchanged

Boolean Algebra

Lecture 2 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Axioms

Number Axiom Name
A1 B = 0 if B ≠ 1 Binary Field
A2 0 = 1 NOT
A3 0 • 0 = 0 AND/OR
A4 1 • 1 = 1 AND/OR
A5 0 • 1 = 1 • 0 = 0 AND/OR

Lecture 2 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Axioms

Number Axiom Name
A1 B = 0 if B ≠ 1 Binary Field

A2 0 = 1 NOT

A3 0 • 0 = 0 AND/OR

A4 1 • 1 = 1 AND/OR

A5 0 • 1 = 1 • 0 = 0 AND/OR

Dual: Replace: • with +
0 with 1

Lecture 2 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Axioms

Number Axiom Dual Name
A1 B = 0 if B ≠ 1 B = 1 if B ≠ 0 Binary Field

A2 0 = 1 1 = 0 NOT

A3 0 • 0 = 0 1 + 1 = 1 AND/OR

A4 1 • 1 = 1 0 + 0 = 0 AND/OR

A5 0 • 1 = 1 • 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR

Dual: Replace: • with +
0 with 1

Lecture 2 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Theorems of One Variable

Number Theorem Name
T1 B • 1 = B Identity

T2 B • 0 = 0 Null Element

T3 B • B = B Idempotency

T4 B = B Involution

T5 B • B = 0 Complements

Lecture 2 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Theorems of One Variable

Number Theorem Name
T1 B • 1 = B Identity
T2 B • 0 = 0 Null Element
T3 B • B = B Idempotency
T4 B = B Involution
T5 B • B = 0 Complements

Dual: Replace: • with +
0 with 1

Lecture 2 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Theorems of One Variable

Number Theorem Dual Name
T1 B • 1 = B B + 0 = B Identity
T2 B • 0 = 0 B + 1 = 1 Null Element
T3 B • B = B B + B = B Idempotency
T4 B = B Involution
T5 B • B = 0 B + B = 1 Complements

Dual: Replace: • with +
0 with 1

Lecture 2 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

• B 1 = B
• B + 0 = B

T1: Identity Theorem

Lecture 2 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

1 =

=

B

0
B

B

B

• B 1 = B
• B + 0 = B

T1: Identity Theorem

Lecture 2 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

• B 0 = 0
• B + 1 = 1

T2: Null Element Theorem

Lecture 2 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

0 =

=

B

1
B

1

0

• B 0 = 0
• B + 1 = 1

T2: Null Element Theorem

Lecture 2 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

• B B = B
• B + B = B

T3: Idempotency Theorem

Lecture 2 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

B =

=

B

B
B

B

B

• B B = B
• B + B = B

T3: Idempotency Theorem

Lecture 2 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

• B = B

T4: Identity Theorem

Lecture 2 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

= BB

• B = B

T4: Identity Theorem

Lecture 2 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

• B B = 0
• B + B = 1

T5: Complement Theorem

Lecture 2 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

B =

=

B

B
B

1

0

• B B = 0
• B + B = 1

T5: Complement Theorem

Lecture 2 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

Boolean Theorems of Several Vars

Number Theorem Name
T6 B•C = C•B Commutativity

T7 (B•C) • D = B • (C • D) Associativity

T8 B • (C + D) = (B•C) + (B•D) Distributivity

T9 B• (B+C) = B Covering

T10 (B•C) + (B•C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

Consensus

Lecture 2 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we prove these are true?

Boolean Theorems of Several Vars

Number Theorem Name
T6 B•C = C•B Commutativity

T7 (B•C) • D = B • (C • D) Associativity

T8 B • (C + D) = (B•C) + (B•D) Distributivity

T9 B• (B+C) = B Covering

T10 (B•C) + (B•C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

Consensus

Lecture 2 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Prove

• Method 1: Perfect induction
• Method 2: Use other theorems and axioms

to simplify the equation
– Make one side of the equation look like

the other

Lecture 2 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

Proof by Perfect Induction

• Also called: proof by exhaustion
• Check every possible input value

• If two expressions produce the same value
for every possible input combination, the
expressions are equal

Lecture 2 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

Example: Proof by Perfect Induction

Number Theorem Name
T6 B•C = C•B Commutativity

0 0
0 1
1 0
1 1

B C BC CB

Lecture 2 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

0 0
0 0
0 0
1 1

Number Theorem Name
T6 B•C = C•B Commutativity

Example: Proof by Perfect Induction

0 0
0 1
1 0
1 1

B C BC CB

Lecture 2 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

T7: Associativity

Number Theorem Name
T7 (B•C) • D = B • (C • D) Associativity

Lecture 2 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

T8: Distributivity

Number Theorem Name
T8 B • (C + D) = (B•C) + (B•D) Distributivity

Lecture 2 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

Number Theorem Name
T9 B• (B+C) = B Covering

Lecture 2 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

Prove true by:
• Method 1: Perfect induction
• Method 2: Using other theorems and axioms

Number Theorem Name
T9 B• (B+C) = B Covering

Lecture 2 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

0 0
0 1
1 0
1 1

B C (B+C) B(B+C)

Method 1: Perfect Induction

Number Theorem Name
T9 B• (B+C) = B Covering

Lecture 2 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

Method 1: Perfect Induction

0 0
1 0
1 1
1 1

Number Theorem Name
T9 B• (B+C) = B Covering

0 0
0 1
1 0
1 1

B C (B+C) B(B+C)

Lecture 2 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

Method 1: Perfect Induction

0 0
1 0
1 1
1 1

Number Theorem Name
T9 B• (B+C) = B Covering

0 0
0 1
1 0
1 1

B C (B+C) B(B+C)

Lecture 2 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

Number Theorem Name
T9 B• (B+C) = B Covering

Method 2: Prove true using other axioms and
theorems.

Lecture 2 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

T9: Covering

Method 2: Prove true using other axioms and
theorems.
B•(B+C) = B•B + B•C T8: Distributivity

= B + B•C T3: Idempotency
= B•(1 + C) T8: Distributivity
= B•(1) T2: Null element
= B T1: Identity

Number Theorem Name
T9 B• (B+C) = B Covering

Lecture 2 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

T10: Combining

Prove true using other axioms and theorems:

Number Theorem Name
T10 (B•C) + (B•C) = B Combining

Lecture 2 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

T10: Combining

Prove true using other axioms and theorems:

B•C + B•C = B•(C+C) T8: Distributivity

= B•(1) T5’: Complements

= B T1: Identity

Number Theorem Name
T10 (B•C) + (B•C) = B Combining

Lecture 2 <55> Digital Design and Computer Architecture: ARM® Edition © 2015

T11: Consensus

Number Theorem Name
T11 (B•C) + (B•D) + (C•D) =

(B•C) + (B•D)
Consensus

Prove true using (1) perfect induction or (2)
other axioms and theorems.

Lecture 2 <56> Digital Design and Computer Architecture: ARM® Edition © 2015

Dual: Replace: • with +
0 with 1

Theorem Dual Name
T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Boolean Theorems of Several Vars

Lecture 2 <57> Digital Design and Computer Architecture: ARM® Edition © 2015

Theorem Dual Name
T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Boolean Theorems of Several Vars

Warning: T8’ differs from traditional algebra:
OR (+) distributes over AND (•)

Lecture 2 <58> Digital Design and Computer Architecture: ARM® Edition © 2015

Theorem Dual Name
T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Boolean Theorems of Several Vars

Axioms and theorems are useful for simplifying equations.

Lecture 2 <59> Digital Design and Computer Architecture: ARM® Edition © 2015

Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Lecture 2 <60> Digital Design and Computer Architecture: ARM® Edition © 2015

Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Recall:
– Implicant: product of literals

ABC, AC, BC
– Literal: variable or its complement

A, A, B, B, C, C

Lecture 2 <61> Digital Design and Computer Architecture: ARM® Edition © 2015

Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Recall:
– Implicant: product of literals

ABC, AC, BC
– Literal: variable or its complement

A, A, B, B, C, C
Also called minimizing the equation

Lecture 2 <62> Digital Design and Computer Architecture: ARM® Edition © 2015

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

Lecture 2 <63> Digital Design and Computer Architecture: ARM® Edition © 2015

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

• Expansion P = PA + PA
A = A + AP

• Duplication A = A + A

Lecture 2 <64> Digital Design and Computer Architecture: ARM® Edition © 2015

Simplification methods
• Distributivity (T8, T8’) B (C+D) = BC + BD

B + CD = (B+ C)(B+D)

• Covering (T9’) A + AP = A

• Combining (T10) PA + PA = P

• Expansion P = PA + PA
A = A + AP

• Duplication A = A + A

• “Simplification” theorem PA + A = P + A

PA + A = P + A

Lecture 2 <65> Digital Design and Computer Architecture: ARM® Edition © 2015

T11: Consensus

Number Theorem Name
T11 (B•C) + (B•D) + (C•D) =

(B•C) + (B•D)
Consensus

Prove using other theorems and axioms:

Lecture 2 <66> Digital Design and Computer Architecture: ARM® Edition © 2015

T11: Consensus

Number Theorem Name
T11 (B•C) + (B•D) + (C•D) =

(B•C) + (B•D)
Consensus

Prove using other theorems and axioms:

B•C + B•D + C•D
= BC + BD + (CDB+CDB) T10: Combining
= BC + BD + BCD+BCD T6: Commutativity
= BC + BCD + BD + BCD T6: Commutativity
= (BC + BCD) + (BD + BCD) T7: Associativity
= BC + BD T9’: Covering

Lecture 2 <67> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = AB + AB

Simplifying Boolean Equations

Example 1:

Lecture 2 <68> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = AB + AB
Y = A T10: Combining

or
= A(B + B) T8: Distributivity
= A(1) T5’: Complements
= A T1: Identity

Simplifying Boolean Equations
Example 1:

Lecture 2 <69> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = A(AB + ABC)
Example 2:

Simplifying Boolean Equations

Lecture 2 <70> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = A(AB + ABC)
= A(AB(1 + C)) T8: Distributivity
= A(AB(1)) T2’: Null Element
= A(AB) T1: Identity
= (AA)B T7: Associativity
= AB T3: Idempotency

Example 2:

Simplifying Boolean Equations

Lecture 2 <71> Digital Design and Computer Architecture: ARM® Edition © 2015

DeMorgan’s Theorem

Number Theorem Name
T12 B0•B1•B2… = B0+B1+B2… DeMorgan’s

Theorem

Lecture 2 <72> Digital Design and Computer Architecture: ARM® Edition © 2015

DeMorgan’s Theorem

The complement of the product
is the

sum of the complements

Number Theorem Name
T12 B0•B1•B2… = B0+B1+B2… DeMorgan’s

Theorem

Lecture 2 <73> Digital Design and Computer Architecture: ARM® Edition © 2015

DeMorgan’s Theorem: Dual

The complement of the product
is the

sum of the complements.

Dual: The complement of the sum
is the

product of the complements.

Theorem Dual Name
T12 B0•B1•B2… =

B0+B1+B2…
B0+B1+B2… =
B0•B1•B2…

DeMorgan’s
Theorem

Lecture 2 <74> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = (A+BD)C

DeMorgan’s Theorem Example 1

Lecture 2 <75> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = (A+BD)C
= (A+BD) + C
= (A•(BD)) + C
= (A•(BD)) + C
= ABD + C

DeMorgan’s Theorem Example 1

Lecture 2 <76> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = (ACE+D) + B

DeMorgan’s Theorem Example 2

Lecture 2 <77> Digital Design and Computer Architecture: ARM® Edition © 2015

Y = (ACE+D) + B
= (ACE+D) • B
= (ACE•D) • B
= ((AC+E)•D) • B
= ((AC+E)•D) • B
= (ACD + DE) • B
= ABCD + BDE

DeMorgan’s Theorem Example 2

Lecture 2 <78> Digital Design and Computer Architecture: ARM® Edition © 2015

• Y = AB = A + B

• Y = A + B = A B

A
B Y

A
B Y

A
B Y

A
B Y

DeMorgan’s Theorem

Lecture 2 <79> Digital Design and Computer Architecture: ARM® Edition © 2015

• Backward:
– Body changes
– Adds bubbles to inputs

• Forward:
– Body changes
– Adds bubble to output

A
B Y A

B Y

A
B YA

B Y

Bubble Pushing

Lecture 2 <80> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

Y
C
D

Bubble Pushing

• What is the Boolean expression for this
circuit?

Lecture 2 <81> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

Y
C
D

• What is the Boolean expression for this
circuit?

Y = AB + CD

Bubble Pushing

Lecture 2 <82> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

C

D
Y

• Begin at output, then work toward inputs
• Push bubbles on final output back
• Draw gates in a form so bubbles cancel

Bubble Pushing Rules

Lecture 2 <83> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

C Y
D

Bubble Pushing Example

Lecture 2 <84> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

C Y
D

no output
bubble

Bubble Pushing Example

Lecture 2 <85> Digital Design and Computer Architecture: ARM® Edition © 2015

bubble on
input and outputA

B

C

D
Y

A
B

C Y
D

no output
bubble

Bubble Pushing Example

Lecture 2 <86> Digital Design and Computer Architecture: ARM® Edition © 2015

A
B

C

D
Y

bubble on
input and outputA

B

C

D
Y

A
B

C Y
D

Y = ABC + D

no output
bubble

no bubble on
input and output

Bubble Pushing Example

Lecture 2 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

• Two-level logic: ANDs followed by ORs

• Example: Y = ABC + ABC + ABC

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

From Logic to Gates

Lecture 2 <88> Digital Design and Computer Architecture: ARM® Edition © 2015

• Inputs on the left (or top)
• Outputs on right (or bottom)
• Gates flow from left to right
• Straight wires are best

Circuit Schematics Rules

Lecture 2 <89> Digital Design and Computer Architecture: ARM® Edition © 2015

• Wires always connect at a T junction
• A dot where wires cross indicates a

connection between the wires
• Wires crossing without a dot make no

connection
wires connect
at a T junction

wires connect
at a dot

wires crossing
without a dot do

not connect

Circuit Schematic Rules (cont.)

Lecture 2 <90> Digital Design and Computer Architecture: ARM® Edition © 2015

A1 A0
0 0
0 1
1 0
1 1

Y3 Y2 Y1 Y0A3 A2
0 0
0 0
0 0
0 0

0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

Multiple-Output Circuits

A0

A1

PRIORITY
CiIRCUIT

A2

A3

Y0

Y1

Y2

Y3

• Example: Priority Circuit
Output asserted
corresponding to most
significant TRUE input

Lecture 2 <91> Digital Design and Computer Architecture: ARM® Edition © 2015

0

A1 A0
0 0
0 1
1 0
1 1

0

0
0

Y3 Y2 Y1 Y0
0
0
0
0

0
0
1
1

0
1
0
0

A3 A2
0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A0

A1

PRIORITY
CiIRCUIT

A2

A3

Y0

Y1

Y2

Y3

• Example: Priority Circuit
Output asserted
corresponding to most
significant TRUE input

Multiple-Output Circuits

Lecture 2 <92> Digital Design and Computer Architecture: ARM® Edition © 2015

A1 A0
0 0
0 1
1 0
1 1

0
0
0
0

Y3 Y2 Y1 Y0
0
0
0
0

0
0
1
1

0
1
0
0

A3 A2
0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A3A2A1A0
Y3
Y2

Y1

Y0

Priority Circuit Hardware

Lecture 2 <93> Digital Design and Computer Architecture: ARM® Edition © 2015

A1 A0
0 0
0 1
1 0
1 1

0
0
0
0

Y3 Y2 Y1 Y0
0
0
0
0

0
0
1
1

0
1
0
0

A3 A2
0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A1 A0
0 0
0 1
1 X
X X

0
0
0
0

Y3 Y2 Y1 Y0
0
0
0
1

0
0
1
0

0
1
0
0

A3 A2
0 0
0 0
0 0
0 1

X X 1 0 0 01 X

Don’t Cares

Lecture 2 <94> Digital Design and Computer Architecture: ARM® Edition © 2015

• Contention: circuit tries to drive output to 1 and 0
– Actual value somewhere in between
– Could be 0, 1, or in forbidden zone
– Might change with voltage, temperature, time, noise
– Often causes excessive power dissipation

• Warnings:
– Contention usually indicates a bug.
– X is used for “don’t care” and contention - look at the context

to tell them apart.

A = 1
Y = X

B = 0

Contention: X

Lecture 2 <95> Digital Design and Computer Architecture: ARM® Edition © 2015

• Floating, high impedance, open, high Z

• Floating output might be 0, 1, or
somewhere in between
– A voltmeter won’t indicate whether a node is floating

Tristate Buffer

E A Y
0 0 Z
0 1 Z
1 0 0
1 1 1

A

E

Y

Floating: Z

Lecture 2 <96> Digital Design and Computer Architecture: ARM® Edition © 2015

Floating nodes are used in tristate
busses
– Many different drivers

– Exactly one is active at once

en1

to bus
from bus

en2

to bus
from bus

en3

to bus
from bus

en4

to bus
from bus

sh
a

re
d

 b
u

s

processor

video

Ethernet

memory

Tristate Busses

Lecture 2 <97> Digital Design and Computer Architecture: ARM® Edition © 2015

• Boolean expressions can be minimized by
combining terms

• K-maps minimize equations graphically

• PA + PA = P

C 00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

Karnaugh Maps (K-Maps)

Lecture 2 <98> Digital Design and Computer Architecture: ARM® Edition © 2015

C 00 01

0

1

Y

11 10
AB

1

0

0

0

0

0

0

1

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

• Circle 1’s in adjacent squares
• In Boolean expression, include only literals

whose true and complement form are not
in the circle

Y = AB

K-Map

Lecture 2 <99> Digital Design and Computer Architecture: ARM® Edition © 2015

• Complement: variable with a bar over it

A, B, C
• Literal: variable or its complement

A, A, B, B, C, C
• Implicant: product of literals

ABC, AC, BC
• Prime implicant: implicant corresponding to

the largest circle in a K-map

K-Map Definitions

Lecture 2 <100> Digital Design and Computer Architecture: ARM® Edition © 2015

• Every 1 must be circled at least once

• Each circle must span a power of 2 (i.e. 1, 2,

4) squares in each direction

• Each circle must be as large as possible

• A circle may wrap around the edges

• A “don't care” (X) is circled only if it helps

minimize the equation

K-Map Rules

Lecture 2 <101> Digital Design and Computer Architecture: ARM® Edition © 2015

01 11

01

11

10

00

00

10
AB

CD

Y

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
1
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

1
0
0
0
0
0

4-Input K-Map

Lecture 2 <102> Digital Design and Computer Architecture: ARM® Edition © 2015

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

1

11

10

00

00

10
AB

CD

Y

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
1
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

1
0
0
0
0
0

4-Input K-Map

Lecture 2 <103> Digital Design and Computer Architecture: ARM® Edition © 2015

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

1

11

10

00

00

10
AB

CD

Y

Y = AC + ABD + ABC + BD

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
1
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

1
0
0
0
0
0

4-Input K-Map

Lecture 2 <104> Digital Design and Computer Architecture: ARM® Edition © 2015

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
X
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

X
X
X
X
X
X

01 11

01

11

10

00

00

10
AB

CD

Y

K-Maps with Don’t Cares

Lecture 2 <105> Digital Design and Computer Architecture: ARM® Edition © 2015

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
X
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

X
X
X
X
X
X

01 11

1

0

0

X

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10
AB

CD

Y

K-Maps with Don’t Cares

Lecture 2 <106> Digital Design and Computer Architecture: ARM® Edition © 2015

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
X
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

X
X
X
X
X
X

01 11

1

0

0

X

X

X

1

101

1

1

1

1

X

X

X

X

11

10

00

00

10
AB

CD

Y

Y = A + BD + C

K-Maps with Don’t Cares

Lecture 2 <107> Digital Design and Computer Architecture: ARM® Edition © 2015

• Multiplexers
• Decoders

Combinational Building Blocks

Lecture 2 <108> Digital Design and Computer Architecture: ARM® Edition © 2015

• Selects between one of N inputs to connect

to output

• log2N-bit select input – control input
• Example: 2:1 Mux

Multiplexer (Mux)

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S Y
0
1 D1

D0

S

Lecture 2 <109> Digital Design and Computer Architecture: ARM® Edition © 2015

2-<109>

• Logic gates
– Sum-of-products form

Y

D0

S

D1

D1

Y

D0

S

S 00 01

0

1

Y

11 10
D0 D1

0

0

0

1

1

1

1

0

Y = D0S + D1S

• Tristates
– For an N-input mux, use N

tristates
– Turn on exactly one to

select the appropriate
input

Multiplexer Implementations

Lecture 2 <110> Digital Design and Computer Architecture: ARM® Edition © 2015

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

00

Y01
10
11

A B

Using mux as a lookup table

Logic using Multiplexers

Lecture 2 <111> Digital Design and Computer Architecture: ARM® Edition © 2015

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

A Y

0

1

0 0

1

A

B
Y

B

Reducing the size of the mux

Logic using Multiplexers

Lecture 2 <112> Digital Design and Computer Architecture: ARM® Edition © 2015

2:4
Decoder

A1
A0

Y3
Y2
Y1
Y000

01
10
11

0 0
0 1
1 0
1 1

0
0
0
1

Y3 Y2 Y1 Y0A0A1
0
0
1
0

0
1
0
0

1
0
0
0

• N inputs, 2N outputs
• One-hot outputs: only one output HIGH at once

Decoders

Lecture 2 <113> Digital Design and Computer Architecture: ARM® Edition © 2015

Y3

Y2

Y1

Y0

A0A1

Decoder Implementation

Lecture 2 <114> Digital Design and Computer Architecture: ARM® Edition © 2015

2:4
Decoder

A
B

00
01
10
11

Y = AB + AB

Y

AB
AB
AB
AB

Minterm

= A Å B

OR minterms

Logic Using Decoders

