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Introduction

A logic circuit is composed of:
* |nputs

* Qutputs

* Functional specification

* Timing specification

( )
¥ functional spec

iInputs >

—» timing spec
- y,

S outputs
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Circuits

* Nodes
— lnputs: A, B, C g N
— Outputs: Y, Z A g1 |
—
— Internal: n1 B P— 18 Jpv
L C E2 > 7
e Circuit elements  — )
—E1, E2, E3

— Each a circuit
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Types of Logic Circuits

 Combinational Logic

— Memoryless

— Outputs determined by current values of inputs

* Sequential Logic

— Has memory

— Outputs determined by previous and current values

of inputs

-
- functional spec

inputs —»

—» timing spec
\

~

_>

J
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Rules of Combinational Composition

* Every element is combinational

* Every node is either an input or connects
to exactly one output

* The circuit contains no cyclic paths

il
=i

e Example:
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Boolean Equations

* Functional specification of outputs in terms
of inputs
* Example: S =FA, B,C,)
C..t = F(A, B, C,)

A [ \—
B—-@.__g
Cin—\ ) out

S =A®B@®C,
C,, =AB+AC, +BC,
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Some Definitions

 Complement: variable with a bar over it
A, B,C

 Literal: variable or its complement
A A B,B,C,C

* Implicant: product of literals
ABC, AC, BC

* Minterm: product that includes all input variables
ABC, ABC, ABC

 Maxterm: sum that includes all input variables
(A+B+C), (A+B+C), (A+B+C)
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Sum-of-Products (SOP) Form

e All equations can be written in SOP form
e Each row has a minterm

minterm
A B | Y | minterm| name
0 0|0 AB m,
0 1|1 A B m,
1 010 AB m,
1 1|1 A B m,
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Sum-of-Products (SOP) Form

All equations can be written in SOP form

Each row has a minterm
A minterm is a product (AND) of literals

Each minterm is TRUE for that row (and only that row)

minterm
A B | Y | minterm| name
0 0|0 AB m,
0 1|1 A B m,
1 0|0 AB m,
1 111 A B m,
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Sum-of-Products (SOP) Form

All equations can be written in SOP form

Each row has a minterm
A minterm is a product (AND) of literals

Each minterm is TRUE for that row (and only that row)
Form function by ORing minterms where outputis 1
Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0|0 AB m,
0 1|1 A B m,
1 0|0 AB m,
1 111 A B m,
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Sum-of-Products (SOP) Form

All equations can be written in SOP form

Each row has a minterm

A minterm is a product (AND) of literals

Each minterm is TRUE for that row (and only that row)
Form function by ORing minterms where outputis 1
Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0o AB m,
Co 111 A B m,)
1 0] 0 AB m,
C1 1|1 A B m, )

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <12>

ELSEVIER



Sum-of-Products (SOP) Form

e All equations can be written in SOP form

e Each row has a minterm

e A minterm is a product (AND) of literals

e Each minterm is TRUE for that row (and only that row)
e Form function by ORing minterms where output is 1

e Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0 0 A B "
Co 1|1 A B m,)
1 0 0 A B .
C1 1|1 A B m, )
Y=F(4, B)=AB+AB=X(1, 3)
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Product-of-Sums (POS) Form

e All Boolean equations can be written in POS form
e Each row has a maxterm

maxterm
A B | Y | maxterm| name
o oflo|la+B M, )
0 1| 1]|a+B M,
(1 o] o0o]|A+B M, )
1 1|1 |A+B M,
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Product-of-Sums (POS) Form

e All Boolean equations can be written in POS form

e Each row has a maxterm

e A maxterm is a sum (OR) of literals

e Each maxterm is FALSE for that row (and only that row)

maxterm
A B | Y | maxterm| name
(0 o|o0o]|a+B M, )
0 1|1]la+3B M,
(1 o] o0o]|A+B M, )
1 1|1|Aa+B M,
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Product-of-Sums (POS) Form

All Boolean equations can be written in POS form

Each row has a maxterm

A maxterm is a sum (OR) of literals

Each maxterm is FALSE for that row (and only that row)
Form function by ANDing maxterms where output is 0
Thus, a product (AND) of sums (OR terms)

maxterm
maxterm name

)

M,

Rlo|F oK
g
_|_
o
<

B
B
B M
A
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Boolean Equations Example

* You are going to the cafeteria for lunch
— You won’t eat lunch (E)

— If it’s not open (6) or
— If they only serve corndogs (C)

* Write a truth table for determining if you

will eat lunch (E). O C | E
0 0
0 1
1 0
1 1
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Boolean Equations Example

* You are going to the cafeteria for lunch
— You won’t eat lunch (E)
— If it’s not open (6) or
— If they only serve corndogs (C)

 Write a truth table for determining if you

will eat lunch (E). O C | E
0 0 0
0 1 0
1 0 1
1 1 0
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SOP & POS Form

SOP - sum-of-products

O C | E | minterm
0 0 0 C
0 1 O C
1 0 O C
1 1 O C

POS — product-of-sums
O C | E | maxterm

0 0 O + C

= = O
= O
ol ol ©
+ + +
Ol Q Q)|
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SOP & POS Form

SOP - sum-of-products

O C | E | minterm
0 0] 0 0 C L
o 1] o0 D C E=0C
@ 0|1 0 C ) =X(2)
1 1] 0 0 C
POS — product-of-sums
O C | E | maxterm
(0 o |[0]o+C) _
© 1]lo0o|lo+cCc) E=0OF+0O)0+0O)(0+0)
1 0 1 |0 + C = T1(0. 1. 3
@ 1|00+ . 1,3)
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Boolean Algebra

* Axioms and theorems to simplify Boolean
equations

* Like regular algebra, but simpler: variables
have only two values (1 or 0)

* Duality in axioms and theorems:
—ANDs and ORs, O’s and 1’s interchanged
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Boolean Axioms

Number Axiom Name

Al B=0ifB#1 Binary Field
A2 0=1 NOT

A3 0¢0=0 AND/OR
A4 l1e1=1 AND/OR
A5 Oel1=1¢0=0 AND/OR
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Boolean Axioms

Number Axiom Name

Al B=0ifB#1 Binary Field
A2 0=1 NOT

A3 0¢0=0 AND/OR
A4 l1e1=1 AND/OR
A5 Oel1=1¢0=0 AND/OR

Dual: Replace: e with +
0 with 1
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Boolean Axioms

Number Axiom Dual Name
Al B=0ifB#1 B=1ifB#0 Binary Field
A2 0=1 1=0 NOT

A3 0¢0=0 1+1=1 AND/OR
A4 l1e1=1 0+0=0 AND/OR
A5 Oel=1¢0=0 |[1+0=0+1=1 |AND/OR

Dual: Replace: e with +
O with 1
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Boolean Theorems of One Variable

Number Theorem Name

T1 Bel=B ldentity

T2 BeO=0 Null Element

T3 BeB=B ldempotency

T4 B=B Involution

T5 BeB=0 Complements
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Boolean Theorems of One Variable

Number Theorem Name

T1 Bel=B ldentity

T2 BeO=0 Null Element

T3 BeB=B ldempotency
T4 B=B Involution

T5 BeB=0 Complements

Dual: Replace: e with +
O with 1
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Boolean Theorems of One Variable

Number Theorem Dual Name

T1 Bel=B B+0=B ldentity

T2 Be0O=0 B+1=1 Null Element

T3 BeB=B B+B=8B Idempotency
T4 B=8B Involution

T5 BeB=0 B+B=1 Complements

Dual: Replace: e with +
O with 1
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T1: Identity Theorem
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T1: Identity Theorem

o
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T2: Null Element Theorem
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T2: Null Element Theorem

—
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T3: Idempotency Theorem
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T3: Idempotency Theorem

o @
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T4: Identity Theorem
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T4: Identity Theorem
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T5: Complement Theorem
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T5: Complement Theorem

| ™
Il
o

| W
[l
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Boolean Theorems of Several Vars

Number Theorem Name

T6 BeC=CeB Commutativity

T7 (BeC) e D=B e (Ce D) Associativity

T8 Be(C+D)=(BeC)+(BeD) |Distributivity

T9 Be (B+C) =B Covering

T10 (BeC) + (BeC) =B Combining

T11 (BeC) + (BeD) + (CeD) = Consensus
(BeC) + (BeD)
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Boolean Theorems of Several Vars

Number Theorem Name

T6 BeC=CeB Commutativity

T7 (BeC) e D=B e (Ce D) Associativity

T8 Be(C+D)=(BeC)+(BeD) |Distributivity

T9 Be (B+C) =B Covering

T10 (BeC) + (BeC) =B Combining

T11 (BeC) + (BeD) + (CeD) = Consensus
(BeC) + (BeD)

How do we prove these are true?
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e Method 1: Perfect induction

e Method 2: Use other theorems and axioms
to simplify the equation

— Make one side of the equation look like
the other
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Proof by Perfect Induction

e Also called: proof by exhaustion
e Check every possible input value

e |f two expressions produce the same value
for every possible input combination, the
expressions are equal
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Example: Proof by Perfect Induction

Number Theorem
T6 BeC =CeB Commutativity

BC CB

_ = O O M
~ O KRk Ol
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Example: Proof by Perfect Induction

Number Theorem
T6 BeC =CeB Commutativity

B C| BC CB
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1
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T7: Associativity

Number Theorem
T7 (BeC)e D=B e (Ce D) Associativity
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T8: Distributivity

Number Theorem
T8 Be(C+D)=(BeC)+(BeD) |Distributivity
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T9: Covering

Number Theorem
T9 Be (B+C) =B Covering
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T9: Covering

Number Theorem

T9 Be (B+C) =B Covering

Prove true by:
e Method 1: Perfect induction
e Method 2: Using other theorems and axioms
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T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 1: Perfect Induction

(B+C) B(B+C)

= O O |l
m O R Ol
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T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 1: Perfect Induction

B C| (B+C) B(B+(C)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1
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T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 1: Perfect Induction

B C| (B+C) |B(B+(C)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1
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T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 2: Prove true using other axioms and
theorems.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <51>

ELSEVIER



T9: Covering

Number Theorem

T9 Be (B+C) =B Covering
Method 2: Prove true using other axioms and
theorems.

Be(B+C) = BeB + BeC T8: Distributivity
=B+ BeC T3: Idempotency
= Be(1 + C) T8: Distributivity
= Be(1) T2: Null element
=B T1: Identity
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T10: Combining

Number Theorem
T10 (BeC) + (BeC) =B Combining

Prove true using other axioms and theorems:
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T10: Combining

Number Theorem

T10 (BeC) + (BeC) =B Combining

Prove true using other axioms and theorems:

BeC+BeC  =Be(C+C) T8: Distributivity
= Be(1) T5”: Complements
=B T1: Identity
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T11: Consensus

Number Theorem

T11 (BeC) + (BeD) + (CeD) = Consensus
(BeC) + (BeD)

Prove true using (1) perfect induction or (2)
other axioms and theoremes.
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Boolean Theorems of Several Vars

#

Theorem

Dual

Name

T6 BeC =CeB B+C =C+B Commutativity
T7 (BeC) e D=B ¢ (CeD) (B+C)+D=B+(C+D) Associativity
T8 |Be(C+D)=(BeC)+(BeD) |B+(CeD)=(B+C) (B+D) Distributivity
T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 | (BeC) + (BeC) =B (B+C) ¢ (B+C) =B Combining
T11 | (BeC) + (BeD) + (CeD) = (B+C) ® (B+D)  (C+D) = Consensus

(BeC) + (BeD)

(B+C) ¢ (B+D)

Dual: Replace: e with +

O with 1
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Boolean Theorems of Several Vars

#

Theorem

Dual

Name

T6 BeC =CeB B+C =C+B Commutativity
T7 (BeC) e D=B ¢ (CeD) (B+C)+D=B+(C+D) Associativity
T8 |Be(C+D)=(BeC)+(BeD) |B+(CeD)=(B+C) (B+D) Distributivity
T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 | (BeC) + (BeC) =B (B+C) ¢ (B+C) =B Combining
T11 | (BeC) + (BeD) + (CeD) = (B+C) ® (B+D)  (C+D) = Consensus

(BeC) + (BeD)

(B+C) ¢ (B+D)

Warning: T8’ differs from traditional algebra:
OR (+) distributes over AND ()
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Boolean Theorems of Several Vars

#  Theorem Dual Name

T6 BeC =CeB B+C =C+B Commutativity

T7 (BeC) e D=B ¢ (CeD) (B+C)+D=B+(C+D) Associativity

T8 |Be(C+D)=(BeC)+(BeD) |B+(CeD)=(B+C) (B+D) Distributivity

T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 | (BeC) + (BeC) =B (B+C) ¢ (B+C) =B Combining

T11 | (BeC)+ (BD) +(CeD)= (B+C) o (E+D) ¢ (C+D) = Consensus
(BeC) + (BeD) (B+C) ¢ (B+D)

Axioms and theorems are useful for simplifying equations.
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Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals
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Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Recall:

— Implicant: product of literals
ABC, AC, BC

— Literal: variable or its complement
A ABB,CC
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Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Recall:

— Implicant: product of literals
ABC, AC, BC

— Literal: variable or its complement
A ABB,CC

Also called minimizing the equation
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Simplification methods

* Distributivity (T8, T8’) B(C+D)=BC+BD
B + CD = (B+ C)(B+D)

« Covering (T9’) A+AP=A

* Combining (T10) PA+PA=P
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Simplification methods

* Distributivity (T8, T8’) B(C+D)=BC+BD
B + CD = (B+ C)(B+D)

 Covering (T9’) A+AP=A
*  Combining (T10) PA+PA=P
 Expansion P = PA + PA
A=A+AP
 Duplication A=A+A
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Simplification methods

* Distributivity (T8, T8’) B(C+D)=BC+BD
B + CD = (B+ C)(B+D)

 Covering (T9’) A+AP=A
*  Combining (T10) PA+PA=P
 Expansion P = PA + PA
A=A+AP
 Duplication A=A+A

* “Simplification” theorem PA+A=P+A
PA+A=P+A
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T11: Consensus

Number Theorem Name

T11

(BeC) + (BeD) + (CeD) =
(BeC) + (BeD)

Consensus

Prove using other theorems and axioms:

Digital Design and Computer Architecture: ARM® Edition © 2015
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T11: Consensus

Number Theorem Name

T11

(BeC) + (BeD) + (CeD) =
(BeC) + (BeD)

Consensus

Prove using other theorems and axioms:

BeC + BeD + CD

=BC + BD + (CDB+CDB)
=BC + BD + BCD+BCD
=BC + BCD +BD + BCD

= (BC + BCD) + (BD + BCD)
=BC + BD

T10: Combining
T6: Commutativity
T6: Commutativity
T7: Associativity
T9’: Covering
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Simplifying Boolean Equations

Example 1:
Y=AB + AB
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Simplifying Boolean Equations

Example 1:

Y=AB +AB
Y=A T10: Combining

or
=A(B+ B) T8: Distributivity
= A(1) T5": Complements
= 1: Identity

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <68>




Simplifying Boolean Equations

Example 2:
Y = A(AB + ABC)
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Simplifying Boolean Equations

Example 2:
Y = A(AB + ABC)

= A(AB(1 + ()) T8: Distributivity
= A(AB(1)) T2”: Null Element
= A(AB) T1: Identity

= (AA)B T7: Associativity

= AB T3: Idempotency
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DeMorgan’s Theorem

Number Theorem

T12 B,*B,*B,... = B+B;+B,... DeMorgan’s
Theorem
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DeMorgan’s Theorem

Number Theorem

T12 B,*B,*B,... = B+B;+B,... DeMorgan’s
Theorem

The complement of the product
is the
sum of the complements
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DeMorgan’s Theorem: Dual

Theorem Dual
T12 ByeB,*B,... = B,+B,+B,... = DeMorgan’s
B,+B,+B,... B,*B,*B,... Theorem

The complement of the product
is the
sum of the complements.

Dual: The complement of the sum
is the
product of the complements.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <73>




DeMorgan’s Theorem Example 1

Y = (A+BD)C
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DeMorgan’s Theorem Example 1

Y = (A+BD)C
= (A+BD) + C
= (Ae(BD)) + C
= (Ae(BD)) + C
=ABD + C
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DeMorgan’s Theorem Example 2

Y = (ACE+D) + B
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DeMorgan’s Theorem Example 2

Y = (ACE+D) + B

= (ACD + DE) * B
= ABCD + BDE
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DeMorgan’s Theorem
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Bubble Pushing

e Backward:

— Body changes
— Adds bubbles to inputs

A
B(}D—Y

 Forward:

— Body changes
— Adds bubble to output

o >
~<

A
B

J
C;
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Bubble Pushing

e What is the Boolean expression for this
circuit?

=

SO W>
|

B
s
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Bubble Pushing

e What is the Boolean expression for this
circuit?

i@
==

Y=AB+ CD

SO W>
|
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Bubble Pushing Rules

e Begin at output, then work toward inputs
e Push bubbles on final output back

e Draw gates in a form so bubbles cancel

EalSNEe

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <82>




Bubble Pushing Example

Y
v
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Bubble Pushing Example

no output
bubble

o O >
~<
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Bubble Pushing Example

no output
A D——L bubble
B
C Y
D |

bubble on

A input and output
B
C Y
D
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Bubble Pushing Example

no output
A :D@_\\ bubble
B
C Y
D |

bubble on

A input and output
B
C Y
D |

no bubble on

A input and output
D]
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From Logic to Gates

* Two-level logic: ANDs followed by ORs
e Example: Y=ABC+ ABC + ABC

A B C
VA VB —YC
} minterm: ABC
D minterm: ABC
D minterm: ABC
Y
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Circuit Schematics Rules

* |nputs on the left (or top)

e Qutputs on right (or bottom)
* Gates flow from left to right
e Straight wires are best
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Circuit Schematic Rules (cont.)

* Wires always connect at a T junction

e A dot where wires cross indicates a
connection between the wires

* Wires crossing without a dot make no

connection wires crossing
wires connect wires connect without a dot do
ata T junction at a dot not connect
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Multiple-Output Circuits

* Example: Priority Circuit

A, A A ALY, Y, Y, Y,
Output asserted R
: 0O 0 0 1
corresponding to most 00 18
significant TRUE input 0O 0 1 1
5 P 0O 1 0 O
0 1 0 1
Y 0 1 1 0
& ° o 1 1 1
— V| — 1 0 0 O0
& 2 1 0 0 1
— Y —— 1 0 1 0
A 1 1 0 1 1
— A Y —— 1 1 0 0
PRIORITY i % 2 (1)
CilRCUIT T 11 1
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Multiple-Output Circuits

* Example: Priority Circuit

A, A A ALY, Y, Y, Y,

Output asserted A
corresponding to most c 0 0 10 0 0 1
O 0 1 0|0 O 1 o0

significant TRUE input O 0 1 1|0 0 1 o0
o 1 0 0|0 1 0 O

o 1 0 1/0 1 0 O

A, Y, 0 1 1 ofl0 1 0 O

o 1 1 1/0 1 0 O

— A Y, 1 0 0 o1 0 0 O

1 0 0 1|1 o0 0 O

—1A, Y, 1 0 1 0|1 0 0 O

1 0 1 1|1 o0 0 O

—— A Y, —— 1 1 0 ofl1 0 0 O
PRIORITY 1 1 0 1|1 o0 0 O

CilRCUIT 11 1 01 0 0 O

1 1 1 1|1 o0 0 O
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Contention: X

e Contention: circuit tries to drive outputto 1 and O
— Actual value somewhere in between
— Could be 0, 1, or in forbidden zone

— Might change with voltage, temperature, time, noise
— Often causes excessive power dissipation

A=1 >0

—Y =X

B =04 >—
* Warnings:
— Contention usually indicates a bug.

— Xis used for “don’t care” and contention - look at the context
to tell them apart.
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Floating: Z

* Floating, high impedance, open, high Z

* Floating output might be 0, 1, or
somewhere in between

— A voltmeter won’t indicate whether a node is floating
Tristate Buffer

Lecture 2 <95>

ELSEVIER



Tristate Busses

Floating nodes are used in tristate
busses

— Many different drivers

— Exactly one is active at once
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Karnaugh Maps (K-Maps)

* Boolean expressions can be minimized by
combining terms

* K-maps minimize equations graphically
* PA+PA=P

A B C|Y Y Y
0 0 o0 |1 AB AB

o o 11 c 00 01 11 10 c\._ 00 01 11 10
0 1 0 0 _ | - —
o 1 1| o0 o 1 0 0 0 0| ABC | ABC | ABC | ABC
1 0 0 0

1 0 1 0 - - _
1 1 olo 11 1 0 0 0 1| ABC | ABC | ABC | ABC
1 1 1 0
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K-Map

e Circle 1's in adjacent squares

e In Boolean expression, include only literals
whose true and complement form are not

in the circle
A B C|vY Y AB
O 0 0|1 00 01 11 10
o 0 1|1 C
0 1 0 0
O 0 m o | 0 | 0
1 0 0 0
1 0 1 0
1 1 0|0 1 1 0 0 0
1 1 1 0
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K-Map Definitions

e Complement: variable with a bar over it

 Literal: variable or its complement

A A B,B,CC

* Implicant: product of literals
ABC, AC, BC

* Prime implicant: implicant corresponding to
the largest circle in a K-map
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K-Map Rules

* Every 1 must be circled at least once

e Each circle must span a power of 2 (i.e. 1, 2,
4) squares in each direction

* Each circle must be as large as possible
* A circle may wrap around the edges

 A“don't care” (X) is circled only if it helps
minimize the equation
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4-Input K-Map

Digital Design and Computer Architecture: ARM® Edition © 2015

A B C D|Y y

o 0 0 0|1 AB

0 0 0 1 0 CD 00 01 11 10
o 0 1 0|1 —
0 0 1 1 1 00 1 0 0 1

O 1 0 o010

o 1 0 1 |1 —

o 1 1 0|1 01 O 1 0 1
o 1 1 1|1 —
1 0 0 0|1 p N

1 0 0 1 1 11 1 1 0 0
1 0 1 o0 |1 N

1 0 1 11]0

1 1 0 0 0 10 1 1 0 1
1 1 O 1|0 \ -

1 1 1 010

1 1 1 1 0 Y=AC+ ABD + ABC + BD
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K-Maps with Don’t Cares

A B C D Y Y

0 o0 o0 o0 |1 AB
0 0 0 1 0 CD 00 01 11 10
0o o0 1 0|1

o o0 1 1 |1 00
o 1 0 0] o0

0o 1 0 1| X

o 1 1 0|1 01
o 1 1 1|1

1 0 0 0|1

1 0 o0 1|1 1

1 0 1 0| x

1 0 1 1| ¢X

1 1 0 0] x 10
1 1 0 1| x

1 1 1 0| X

1 1 1 1| x

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <104>

ELSEVIER



K-Maps with Don’t Cares

A B C D|Y Y

0 0 0 0 1 AB

o 0o o 11 o0 CD 00 01 11 10
0 0 1 0 1

o o 1 1|1 00 1 0 X 1
0 1 0 0 0

0 1 0 1 X

o 1 1 o0 |1 01 O X X 1
0 1 1 1 1

1 0 0 0 1

1 0 o 111 11 1 1 X X
1 0 1 0 X

1 0 1 1 X

1 1 o0 o lx 10[ 1 1 X X
1 1 0 1 X

1 1 1 0 X

1 1 1 1 X
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K-Maps with Don’t Cares

A B C D Y Y

0 0 0 0 1 AB

0 0 0 1 0 CD 00 01 11 10
0 0 1 0 1

0 0 1 1 1 00 1 0 X 1
0 1 0 0 0

0 1 0 1 X

0 1 1 0 1 01 0 X X 1
0 1 1 1 1

1 0 0 0 1 e

1 0 0 1 1 11 1 1 X X
1 0 1 0 X

1 0 1 1 X

1 1 0 0 % 10 1 1 X X
1 1 0 1| X -

1 1 1 0 X o

1 1 1 1 X Y=A+BD+C
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Combinational Building Blocks

* Multiplexers
e Decoders
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Multiplexer (Mux)

e Selects between one of N inputs to connect
to output

* log,N-bit select input — control input

 Example: 2:1 Ié/lux

O

-
o

PR R oo ooy
rroorrooll

PO RrkroOoOr OFr O
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Multiplexer Implementations

* Logic gates e Tristates
— Sum-of-products form — For an N-input mux, use N
Y 0,0, tristates

(0] o 11 10
— Turn on exactly one to

I ED select the appropriate
11 0 ED 0 input
S

Y=D,S+D,S

D, _}_ %
A
=

v

S

S
D
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Logic using Multiplexers

Using mux as a lookup table

R~ o ol

~ o ol
— o o ol

Y=AB
AB

00

01
10 Y

11
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Logic using Multiplexers

Reducing the size of the mux

A BlYy AlY i
0 0 0)
e SO 0|
i L V1% @dIB® B
VIS Y B -
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Decoders

e Ninputs, 2V outputs
* One-hot outputs: only one output HIGH at once

2:4
Decoder

M—Y,

Ay — 10— Y,

A, — 01—,

00 — Y,
A1 AO y3 y2 y1 YO
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0
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Decoder Implementation

JIUL
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Logic Using Decoders

OR minterms

2:4
Decoder Minterm
11 AB
A 10 AB
B — 01 AB
00 AB
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