E85 Digital Design \& Computer Engineering

Lecture 2: Combinational Logic Design

Lecture 2

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks

Application Software	$>$ "hello world!"
Operating Systems	
Architecture	
Microarchitecture	$\square \xrightarrow{\longrightarrow}$
Logic	or
Digital Circuits	O-
Analog Circuits	-is
Devices	
Physics	

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

- Nodes
- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- Circuit elements
- E1, E2, E3
- Each a circuit

Types of Logic Circuits

- Combinational Logic
- Memoryless
- Outputs determined by current values of inputs
- Sequential Logic
- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S=F\left(A, B, C_{\text {in }}\right)$

$$
C_{\text {out }}=F\left(A, B, C_{\text {in }}\right)
$$

$$
\begin{aligned}
& A-\Psi=S \\
& B-\Psi=C_{\mathrm{out}} \\
& C_{\mathrm{in}}-\Psi
\end{aligned}
$$

$$
\begin{aligned}
& S \quad=A \oplus B \oplus C_{\text {in }} \\
& C_{\text {out }}=A B+A C_{\text {in }}+B C_{\text {in }}
\end{aligned}
$$

Some Definitions

- Complement: variable with a bar over it $\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement $A, \bar{A}, B, \bar{B}, C, \bar{C}$
- Implicant: product of literals $A B \bar{C}, \overline{A C}, B C$
- Minterm: product that includes all input variables $A B \bar{C}, A \bar{B} \bar{C}, A B C$
- Maxterm: sum that includes all input variables $(A+\bar{B}+C),(\bar{A}+B+\bar{C}),(\bar{A}+\bar{B}+C)$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{Y}	minterm	minterm name
0	0	0	$\overline{\mathrm{~A}} \overline{\mathrm{~B}}$	m_{0}
0	1	1	$\overline{\mathrm{~A}} \mathrm{~B}$	m_{1}
1	0	0	$\mathrm{~A} \overline{\mathrm{~B}}$	m_{2}
1	1	1	A	B
m_{3}				

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
$\left.\begin{array}{cc|c|c|c}\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{Y} & \text { minterm } & \begin{array}{c}\text { minterm } \\ \text { name }\end{array} \\ \hline 0 & 0 & 0 & \overline{\mathrm{~A}} \overline{\mathrm{~B}} & m_{0} \\ 0 & 1 & 1 & \overline{\mathrm{~A}} \mathrm{~B} & m_{1} \\ 1 & 0 & 0 & \mathrm{~A} & \overline{\mathrm{~B}} \\ 1 & 1 & 1 & \mathrm{~A} & \mathrm{~B}\end{array}\right) m_{3}$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)
$\left.\begin{array}{cc|c|c|c}\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{Y} & \text { minterm } & \begin{array}{c}\text { minterm } \\ \text { name }\end{array} \\ \hline 0 & 0 & 0 & \overline{\mathrm{~A}} \overline{\mathrm{~B}} & m_{0} \\ 0 & 1 & 1 & \overline{\mathrm{~A}} \mathrm{~B} & m_{1} \\ 1 & 0 & 0 & \mathrm{~A} & \overline{\mathrm{~B}} \\ 1 & 1 & 1 & \mathrm{~A} & \mathrm{~B}\end{array}\right) m_{3}$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{Y}	minterm	minterm name
0	0	0	$\overline{\mathrm{~A}} \overline{\mathrm{~B}}$	\boldsymbol{m}_{0}
0	1	1	$\overline{\mathrm{~A}} \mathrm{~B}$	\boldsymbol{m}_{1}
1	0	0	$\mathrm{~A} \overline{\mathrm{~B}}$	\boldsymbol{m}_{2}
1	1	1	A B	\boldsymbol{m}_{3}

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where output is 1
- Thus, a sum (OR) of products (AND terms)

A	B	Y	minterm	minterm name
0	0	0	$\bar{A} \bar{B}$	m_{0}
0	1	1	$\overline{\text { A }}$	m_{1}
1	0	0	A \bar{B}	m_{2}
1	1	1	A B	m_{3}
$\boldsymbol{Y}=\mathbf{F}(\mathbf{A}, \mathrm{B})=\overline{\mathbf{A}} \mathbf{B}+\mathbf{A B}=\boldsymbol{\Sigma}(1,3)$				

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{Y}	maxterm	maxterm name
0	0	0	$\mathrm{~A}+\mathrm{B}$	M_{0}
0	1	1	$\mathrm{~A}+\overline{\mathrm{B}}$	M_{1}
1	0	0	$\overline{\mathrm{~A}}+\mathrm{B}$	M_{2}
1	1	1	$\overline{\mathrm{~A}}+\overline{\mathrm{B}}$	M_{3}

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{Y}	maxterm	maxterm name
0	0	0	$\mathrm{~A}+\mathrm{B}$	M_{0}
0	1	1	$\mathrm{~A}+\overline{\mathrm{B}}$	M_{1}
1	0	0	$\overline{\mathrm{~A}}+\mathrm{B}$	M_{2}
1	1	1	$\overline{\mathrm{~A}}+\overline{\mathrm{B}}$	M_{3}

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing maxterms where output is $\mathbf{0}$
- Thus, a product (AND) of sums (OR terms)

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{Y}	maxterm	maxterm name
0	0	0	$\mathrm{~A}+\mathrm{B}$	\boldsymbol{M}_{0}
0	1	1	$\mathrm{~A}+\overline{\mathrm{B}}$	\boldsymbol{M}_{1}
1	0	0	$\bar{A}+\overline{\mathrm{B}}$	\boldsymbol{M}_{2}
1	1	1	$\overline{\mathrm{~A}}+\overline{\mathrm{B}}$	\boldsymbol{M}_{3}
$\boldsymbol{Y}=\mathbf{F}(\boldsymbol{A}, \boldsymbol{B})=(\boldsymbol{A}+\boldsymbol{B})(\overline{\boldsymbol{A}}+\boldsymbol{B})=\boldsymbol{\Pi}(\mathbf{0}, \mathbf{2})$				

Boolean Equations Example

- You are going to the cafeteria for lunch
- You won't eat lunch (E)
- If it's not open ($\overline{\mathrm{O}}$) or
- If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

O	C	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
- You won't eat lunch (E)
- If it's not open ($\overline{\mathrm{O}}$) or
- If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

O	C	E
0	0	0
0	1	0
1	0	1
1	1	0

SOP \& POS Form

\section*{SOP - sum-of-products
 | O | C | E | minterm |
| :---: | :---: | :---: | :---: |
| 0 | 0 | | $\overline{\bar{O}} \overline{\mathrm{C}}$ |
| 0 | 1 | | $\overline{\mathrm{O}}$ |
| 1 | C | | |
| 1 | 0 | | 0 C |
| 1 | 1 | | 0 C |}

POS - product-of-sums

O	C	E	maxterm
0	0		$O+\frac{C}{C}$
0	1		$0+\bar{C}$
1	0		$\bar{O}+\frac{C}{\bar{C}}$
1	1		$\bar{O}+\bar{C}$

SOP \& POS Form

SOP - sum-of-products

O	C	E	minterm
0	0	0	$\overline{\mathrm{O}} \overline{\mathrm{C}}$
0	1	0	$\overline{\mathrm{O}} \mathrm{C}$
1	0	1	$0 \overline{\bar{C}}$
1	1	0	0 C

$$
\begin{aligned}
E & =O \bar{C} \\
& =\Sigma(2)
\end{aligned}
$$

POS - product-of-sums

O	C	E	maxterm
0	0	0	$\bar{O}+\bar{C}$
0	1	0	$0+\overline{\mathrm{C}}$
1	0	1	$\bar{O}+\bar{C}$
1	1	0	$\overline{\mathrm{O}}+\overline{\mathrm{C}}$

$$
\begin{aligned}
E & =(O+C)(O+\bar{C})(\bar{O}+\bar{C}) \\
& =\Pi(0,1,3)
\end{aligned}
$$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
-ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

Number	Axiom	Name
A1	$B=0$ if $B \neq 1$	Binary Field
A2	$\overline{0}=1$	NOT
A3	$0 \bullet 0=0$	AND/OR
A4	$1 \bullet 1=1$	AND/OR
A5	$0 \bullet 1=1 \bullet 0=0$	AND/OR

Boolean Axioms

Number	Axiom	Name
A1	$B=0$ if $B \neq 1$	Binary Field
A2	$\overline{0}=1$	NOT
A3	$0 \bullet 0=0$	AND/OR
A4	$1 \bullet 1=1$	AND/OR
A5	$0 \bullet 1=1 \bullet 0=0$	AND/OR

Dual: Replace: • with +
0 with 1

Boolean Axioms

Number	Axiom	Dual	Name
A1	$B=0$ if $B \neq 1$	$B=1$ if $B \neq 0$	Binary Field
A2	$\overline{0}=1$	$\overline{1}=0$	NOT
A3	$0 \bullet 0=0$	$1+1=1$	AND/OR
A4	$1 \bullet 1=1$	$0+0=0$	AND/OR
A5	$0 \bullet 1=1 \bullet 0=0$	$1+0=0+1=1$	AND/OR

Dual: Replace: • with +
0 with 1

Boolean Theorems of One Variable

Number	Theorem	Name
T1	$\mathrm{B} \bullet 1=\mathrm{B}$	Identity
T2	$\mathrm{B} \bullet 0=0$	Null Element
T3	$\mathrm{B} \bullet \mathrm{B}=\mathrm{B}$	Idempotency
T4	$\overline{\bar{B}}=\mathrm{B}$	Involution
T5	$\mathrm{B} \bullet \overline{\mathrm{B}}=0$	Complements

Boolean Theorems of One Variable

Number	Theorem	Name
T1	$\mathrm{B} \bullet 1=\mathrm{B}$	Identity
T2	$\mathrm{B} \bullet 0=0$	Null Element
T3	$\mathrm{B} \bullet \mathrm{B}=\mathrm{B}$	Idempotency
T4	$\overline{\bar{B}}=\mathrm{B}$	Involution
T5	$\mathrm{B} \bullet \overline{\mathrm{B}}=0$	Complements

Dual: Replace: • with +
0 with 1

Boolean Theorems of One Variable

Number	Theorem	Dual	Name
T1	$B \bullet 1=B$	$B+0=B$	Identity
T2	$B \bullet 0=0$	$B+1=1$	Null Element
T3	$B \bullet B=B$	$B+B=B$	Idempotency
T4	$\overline{\bar{B}}=B$		Involution
T5	$B \bullet \bar{B}=0$	$B+\bar{B}=1$	Complements

Dual: Replace: • with +
0 with 1

T1: Identity Theorem

- $\mathrm{B} \cdot 1=\mathrm{B}$
- $\mathrm{B}+0=\mathrm{B}$

T1: Identity Theorem

- $\mathrm{B} \cdot 1=\mathrm{B}$
- $\mathrm{B}+0=\mathrm{B}$

T2: Null Element Theorem

- $\mathrm{B} \cdot 0=0$
- $\mathrm{B}+1=1$

T2: Null Element Theorem

- $\mathrm{B} \cdot 0=0$
- $\mathrm{B}+1=1$

T3: Idempotency Theorem

- $\mathrm{B} \cdot \mathrm{B}=\mathrm{B}$
- $\mathrm{B}+\mathrm{B}=\mathrm{B}$

T3: Idempotency Theorem

- $\mathrm{B} \cdot \mathrm{B}=\mathrm{B}$
- $\mathrm{B}+\mathrm{B}=\mathrm{B}$

T4: Identity Theorem

- $\overline{\overline{\mathrm{B}}}=\mathrm{B}$

T4: Identity Theorem

- $\overline{\overline{\mathrm{B}}}=\mathrm{B}$

T5: Complement Theorem

- $\mathrm{B} \cdot \overline{\mathrm{B}}=0$
- $\mathrm{B}+\mathrm{B}=1$

T5: Complement Theorem

- $\mathrm{B} \cdot \mathrm{B}=0$
- $\mathrm{B}+\mathrm{B}=1$

Boolean Theorems of Several Vars

Number	Theorem	Name
T6	$\mathrm{B} \bullet \mathrm{C}=\mathrm{C} \bullet \mathrm{B}$	Commutativity
T7	$(\mathrm{B} \bullet \mathrm{C}) \bullet \mathrm{D}=\mathrm{B} \bullet(\mathrm{C} \bullet \mathrm{D})$	Associativity
T8	$\mathrm{B} \bullet(\mathrm{C}+\mathrm{D})=(\mathrm{B} \bullet \mathrm{C})+(\mathrm{B} \bullet \mathrm{D})$	Distributivity
T9	$\mathrm{B} \bullet(\mathrm{B}+\mathrm{C})=\mathrm{B}$	Covering
T10	$(\mathrm{B} \bullet \mathrm{C})+(\mathrm{B} \bullet \overline{\mathrm{C}})=\mathrm{B}$	Combining
T11	$(\mathrm{B} \bullet \mathrm{C})+(\bar{B} \bullet \mathrm{D})+(\mathrm{C} \bullet \mathrm{D})=$	Consensus
$(\mathrm{B} \bullet \mathrm{C})+(\bar{B} \bullet \mathrm{D})$		

Boolean Theorems of Several Vars

Number	Theorem	Name
T6	$\mathrm{B} \bullet \mathrm{C}=\mathrm{C} \bullet \mathrm{B}$	Commutativity
T7	$(\mathrm{B} \bullet \mathrm{C}) \bullet \mathrm{D}=\mathrm{B} \bullet(\mathrm{C} \bullet \mathrm{D})$	Associativity
T8	$\mathrm{B} \bullet(\mathrm{C}+\mathrm{D})=(\mathrm{B} \bullet \mathrm{C})+(\mathrm{B} \bullet \mathrm{D})$	Distributivity
T9	$\mathrm{B} \bullet(\mathrm{B}+\mathrm{C})=\mathrm{B}$	Covering
T10	$(\mathrm{B} \bullet \mathrm{C})+(\mathrm{B} \bullet \overline{\mathrm{C}})=\mathrm{B}$	Combining
T11	$(\mathrm{B} \bullet \mathrm{C})+(\bar{B} \bullet \mathrm{D})+(\mathrm{C} \bullet \mathrm{D})=$	Consensus
$(\mathrm{B} \bullet \mathrm{C})+(\bar{B} \bullet \mathrm{D})$		

How do we prove these are true?

How to Prove

- Method 1: Perfect induction
- Method 2: Use other theorems and axioms to simplify the equation
- Make one side of the equation look like the other

Proof by Perfect Induction

- Also called: proof by exhaustion
- Check every possible input value
- If two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$\mathrm{B} \bullet \mathrm{C}=\mathrm{C} \bullet \mathrm{B}$	Commutativity

\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{B C}$	$\boldsymbol{C B}$
0	0		
0	1		
1	0		
1	1		

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$\mathrm{B} \bullet \mathrm{C}=\mathrm{C} \bullet \mathrm{B}$	Commutativity

\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{B C}$	$\boldsymbol{C B}$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Number	Theorem	Name
T7	$(\mathrm{B} \bullet \mathrm{C}) \bullet \mathrm{D}=\mathrm{B} \bullet(\mathrm{C} \bullet \mathrm{D})$	Associativity

Number	Theorem	Name
T8	$\mathrm{B} \bullet(\mathrm{C}+\mathrm{D})=(\mathrm{B} \bullet \mathrm{C})+(\mathrm{B} \bullet \mathrm{D})$	Distributivity

Number	Theorem	Name
T9	$\mathrm{B} \bullet(\mathrm{B}+\mathrm{C})=\mathrm{B}$	Covering

T9: Covering

Number	Theorem	Name
T9	$\mathrm{B} \bullet(\mathrm{B}+\mathrm{C})=\mathrm{B}$	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

T9: Covering

Number	Theorem	Name
T 9	$\mathrm{~B} \bullet(\mathrm{~B}+\mathrm{C})=\mathrm{B}$	Covering

Method 1: Perfect Induction

B	C	$(B+C)$	$B(B+C)$
0	0		
0	1		
1	0		
1	1		

T9: Covering

Number	Theorem	Name
T 9	$\mathrm{~B} \bullet(\mathrm{~B}+\mathrm{C})=\mathrm{B}$	Covering

Method 1: Perfect Induction

B	\boldsymbol{C}	$(B+C)$	$\boldsymbol{B}(\boldsymbol{B}+\boldsymbol{C})$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

T9: Covering

Number	Theorem	Name
T9	$\mathrm{B} \bullet(\mathrm{B}+\mathrm{C})=\mathrm{B}$	Covering

Method 1: Perfect Induction

B	C	$(B+C)$	$B(B+C)$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

T9: Covering

Number	Theorem	Name
T9	$\mathrm{B} \bullet(\mathrm{B}+\mathrm{C})=\mathrm{B}$	Covering

Method 2: Prove true using other axioms and theorems.

T9: Covering

\section*{Number Theorem
 | T9 | $B \bullet(B+C)=B$ |
| :--- | :--- |
 Name
 Covering}

Method 2: Prove true using other axioms and theorems.

$$
\begin{aligned}
B \bullet(B+C) & =B \bullet B+B \bullet C & & \text { T8: Distributivity } \\
& =B+B \bullet C & & \text { T3: Idempotency } \\
& =B \bullet(1+C) & & \text { T8: Distributivity } \\
& =B \bullet(1) & & \text { T2: Null element } \\
& =B & & \text { T1: Identity }
\end{aligned}
$$

T10: Combining

Number	Theorem	Name
T10	$(\mathrm{B} \cdot \mathrm{C})+(\mathrm{B} \cdot \mathrm{C})=\mathrm{B}$	Combining

Prove true using other axioms and theorems:

T10: Combining

Number	Theorem	Name
T 10	$(\mathrm{~B} \cdot \mathrm{C})+(\mathrm{B} \cdot \mathrm{C})=\mathrm{B}$	Combining

Prove true using other axioms and theorems:

$$
\begin{aligned}
\mathrm{B} \bullet \mathrm{C}+\mathrm{B} \cdot \overline{\mathrm{C}} & =\mathrm{B} \bullet(\mathrm{C}+\overline{\mathrm{C}}) & & \mathrm{T} 8: \text { Distributivity } \\
& =\mathrm{B} \bullet(\mathbf{1}) & & \mathrm{T} 5^{\prime}: \text { Complements } \\
& =\mathrm{B} & & \mathrm{~T} 1: \text { Identity }
\end{aligned}
$$

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C)+(\bar{B} \bullet D)+(C \bullet D)=$ $(B \bullet C)+(\bar{B} \bullet D)$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

Boolean Theorems of Several Vars

$\#$	Theorem	Dual	Name
T6	$B \bullet C=C \bullet B$	$B+C=C+B$	Commutativity
T7	$(B \bullet C) \bullet D=B \bullet(C \bullet D)$	$(B+C)+D=B+(C+D)$	Associativity
T8	$B \bullet(C+D)=(B \bullet C)+(B \bullet D)$	$B+(C \bullet D)=(B+C)(B+D)$	Distributivity
T9	$B \bullet(B+C)=B$	$B+(B \bullet C)=B$	Covering
T10	$(B \bullet C)+(B \bullet \bar{C})=B$	$(B+C) \bullet(B+\bar{C})=B$	Combining
T11	$(B \bullet C)+(\bar{B} \bullet D)+(C \bullet D)=$ $(B \bullet C)+(\bar{B} \bullet D)$	$(B+C) \bullet(\bar{B}+D) \bullet(C+D)=$ $(B+C) \bullet(\bar{B}+D)$	Consensus

Dual: Replace: • with +
0 with 1

Boolean Theorems of Several Vars

$\#$	Theorem	Dual	Name
T6	$B \bullet C=C \bullet B$	$B+C=C+B$	Commutativity
T7	$(B \bullet C) \bullet D=B \bullet(C \bullet D)$	$(B+C)+D=B+(C+D)$	Associativity
T8	$B \bullet(C+D)=(B \bullet C)+(B \bullet D)$	$B+(C \bullet D)=(B+C)(B+D)$	Distributivity
T9	$B \bullet(B+C)=B$	$B+(B \bullet C)=B$	Covering
T10	$(B \bullet C)+(B \bullet \bar{C})=B$	$(B+C) \bullet(B+\bar{C})=B$	Combining
T11	$(B \bullet C)+(\bar{B} \bullet D)+(C \bullet D)=$ $(B \bullet C)+(\bar{B} \bullet D)$	$(B+C) \bullet(\bar{B}+D) \bullet(C+D)=$ $(B+C) \bullet(\bar{B}+D)$	Consensus

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (\cdot)

Boolean Theorems of Several Vars

$\#$	Theorem	Dual	Name
T6	$B \bullet C=C \bullet B$	$B+C=C+B$	Commutativity
T7	$(B \bullet C) \bullet D=B \bullet(C \bullet D)$	$(B+C)+D=B+(C+D)$	Associativity
T8	$B \bullet(C+D)=(B \bullet C)+(B \bullet D)$	$B+(C \bullet D)=(B+C)(B+D)$	Distributivity
T9	$B \bullet(B+C)=B$	$B+(B \bullet C)=B$	Covering
T10	$(B \bullet C)+(B \bullet \bar{C})=B$	Combining	
T11	$(B \bullet C)+(\bar{B} \bullet D)+(C \bullet D)=$ $(B \bullet C)+(\bar{B} \bullet D)$	$(B+C) \bullet(\bar{B}+D) \bullet(C+D)=$ $(B+C) \bullet(\bar{B}+D)$	Consensus

Axioms and theorems are useful for simplifying equations.

Simplifying an Equation

Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Simplifying an Equation

Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Recall:

- Implicant: product of literals

$$
A \bar{B} C, \bar{A} C, \bar{B} C
$$

- Literal: variable or its complement

$$
A, \bar{A}, B, \bar{B}, C, \bar{C}
$$

Simplifying an Equation

Reducing an equation to the fewest number of implicants, where each implicant has the fewest literals

Recall:

- Implicant: product of literals

$$
A \bar{B} C, \bar{A} C, \bar{B} C
$$

- Literal: variable or its complement $A, \bar{A}, B, \bar{B}, C, \bar{C}$

Also called minimizing the equation

Simplification methods

- Distributivity (T8, T8')

$$
\begin{aligned}
& B(C+D)=B C+B D \\
& B+C D=(B+C)(B+D)
\end{aligned}
$$

- Covering (T9')
$A+A P=A$
- Combining (T10)
$P \bar{A}+P A=P$

Simplification methods

- Distributivity (T8, T8')

$$
\begin{aligned}
& B(C+D)=B C+B D \\
& B+C D=(B+C)(B+D)
\end{aligned}
$$

- Covering (T9')
$A+A P=A$
- Combining (T10)
$P A+P A=P$
- Expansion
$P=P \bar{A}+P A$

$$
A=A+A P
$$

- Duplication
$A=A+A$

Simplification methods

- Distributivity (T8, T8')

$$
\begin{aligned}
& B(C+D)=B C+B D \\
& B+C D=(B+C)(B+D)
\end{aligned}
$$

- Covering (T9')
- Combining (T10)
$A+A P=A$
$P \bar{A}+P A=P$
- Expansion

$$
P=\overline{P A}+P A
$$

$$
A=A+A P
$$

- Duplication

$$
A=A+A
$$

- "Simplification" theorem

$$
\begin{aligned}
& \overline{\mathrm{PA}}+\mathrm{A}=\mathrm{P}+\mathrm{A} \\
& \mathrm{PA}+\overline{\mathrm{A}}=\mathrm{P}+\overline{\mathrm{A}}
\end{aligned}
$$

T11: Consensus

Number	Theorem	Name		
T11	$(\mathrm{B} \bullet \mathrm{C})+(\overline{\mathrm{B}} \bullet \mathrm{D})+(\mathrm{C} \bullet \mathrm{D})=$	Consensus		
$(\mathrm{B} \bullet \mathrm{C})+(\overline{\mathrm{B}} \cdot \mathrm{D})$			\quad	
:---				

Prove using other theorems and axioms:

T11: Consensus

Number	Theorem	Name
T11	$(\mathrm{B} \bullet \mathrm{C})+(\bar{B} \bullet \mathrm{D})+(\mathrm{C} \bullet \mathrm{D})=$	Consensus
$(\mathrm{B} \bullet \mathrm{C})+(\bar{B} \bullet D)$		

Prove using other theorems and axioms:

$$
\begin{aligned}
\mathrm{B} \cdot \mathrm{C} & +\overline{\mathrm{B}} \cdot \mathrm{D}+\mathrm{C} \cdot \mathrm{D} \\
& =\mathrm{BC}+\overline{\mathrm{B}} \mathrm{D}+(\mathrm{CDB}+\mathrm{CD} \overline{\mathrm{~B}}) \\
& =\mathrm{BC}+\overline{\mathrm{B}} \mathrm{D}+\mathrm{BCD}+\overline{\mathrm{B}} \mathrm{C} \\
& =\mathrm{BC}+\mathrm{BCD}+\overline{\mathrm{B}} \mathrm{D}+\overline{\mathrm{B}} \mathrm{CD} \\
& =(\mathrm{BC}+\mathrm{BCD})+(\overline{\mathrm{B}} \mathrm{D}+\overline{\mathrm{B}} \mathrm{CD}) \\
& =\mathrm{BC}+\overline{\mathrm{B}} \mathrm{D}
\end{aligned}
$$

T10: Combining
T6: Commutativity
T6: Commutativity
T7: Associativity
T9': Covering

Simplifying Boolean Equations

Example 1:

$$
Y=A B+A \bar{B}
$$

Simplifying Boolean Equations

Example 1:

$$
Y=A B+A \bar{B}
$$

$$
Y=A \quad \text { T10: Combining }
$$

or

$$
\begin{array}{ll}
=A(B+\bar{B}) & \text { T8: Distributivity } \\
=A(1) & \text { T5' }: \text { Complements } \\
=A & \text { T1: Identity }
\end{array}
$$

Simplifying Boolean Equations

Example 2:
 $Y=A(A B+A B C)$

Simplifying Boolean Equations

Example 2:

$$
\begin{aligned}
Y= & A(A B+A B C) \\
& =A(A B(1+C)) \\
& =A(A B(1)) \\
& =A(A B) \\
& =(A A) B \\
& =A B
\end{aligned}
$$

T8: Distributivity
T2': Null Element
T1: Identity
T7: Associativity
T3: Idempotency

DeMorgan's Theorem

Number Theorem
 Name
 T12 $\quad \overline{\mathrm{B}_{0} \bullet \mathrm{~B}_{1} \bullet \mathrm{~B}_{2} \cdots}=\overline{\mathrm{B}}_{0}+\overline{\mathrm{B}}_{1}+\overline{\mathrm{B}}_{2} \cdots$
 DeMorgan’s Theorem

DeMorgan's Theorem

Number	Theorem	Name
T12	$\overline{\mathrm{B}_{0} \bullet \mathrm{~B}_{1} \bullet \mathrm{~B}_{2} \cdots}=\overline{\mathrm{B}_{0}}+\overline{\mathrm{B}_{1}}+\overline{\mathrm{B}}_{2} \cdots$	DeMorgan's Theorem

The complement of the product is the sum of the complements

DeMorgan's Theorem: Dual

$\#$	Theorem	Dual	Name
T12	$\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \mathrm{~B}_{2} \ldots=$	$\mathrm{B}_{0}+\mathrm{B}_{1}+\mathrm{B}_{2} \ldots=$	DeMorgan's
	$\mathrm{B}_{0}+\overline{\mathrm{B}}_{1}+\mathrm{B}_{2} \ldots$	$\mathrm{~B}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~B}}_{2} \ldots$	Theorem

The complement of the product is the
sum of the complements.

Dual: The complement of the sum

 is theproduct of the complements.

DeMorgan's Theorem Example 1

$$
Y=(A+\overline{B D}) \bar{C}
$$

DeMorgan's Theorem Example 1

$$
\begin{aligned}
Y & =(A+\overline{B D}) \bar{C} \\
& =(\overline{A+\overline{B D}})+\overline{\bar{C}} \\
& =(\bar{A} \bullet(\overline{\overline{B D}}))+C \\
& =(\bar{A} \bullet(B D))+C \\
& =\bar{A} B D+C
\end{aligned}
$$

DeMorgan's Theorem Example 2

$$
Y=(\overline{A C} E+\bar{D})+B
$$

DeMorgan's Theorem Example 2

$$
\begin{aligned}
Y & =(\overline{\overline{A C} E}+\bar{D})+B \\
& =(\overline{\overline{A C} E+\bar{D}}) \cdot \bar{B} \\
& =(\overline{\overline{A C}} \cdot \overline{\bar{D}}) \cdot \bar{B} \\
& =((\overline{\overline{A C}}+\bar{E}) \cdot D) \cdot \bar{B} \\
& =((A C+\bar{E}) \cdot D) \cdot \bar{B} \\
& =(A C D+D \bar{E}) \cdot \bar{B} \\
& =A \bar{B} C D+\bar{B} D \bar{E}
\end{aligned}
$$

DeMorgan's Theorem

- $Y=\overline{A B}=\bar{A}+\bar{B}$

- $Y=\overline{A+B}=\bar{A} \cdot \bar{B}$

Bubble Pushing

- Backward:

- Body changes
- Adds bubbles to inputs

- Forward:
- Body changes
- Adds bubble to output

Bubble Pushing

- What is the Boolean expression for this circuit?

Bubble Pushing

- What is the Boolean expression for this circuit?

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

Bubble Pushing Example

Bubble Pushing Example

Bubble Pushing Example

bubble on

Bubble Pushing Example

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y=\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+A \bar{B} C$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection
wires connect
at a T junction

wires connect at a dot
wires crossing without a dot do not connect

Multiple-Output Circuits

- Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_{3}	A_{2}	A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Multiple-Output Circuits

- Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_{3}	Y_{3}
A_{2}	Y_{2}
A_{1}	Y_{1}
A_{0}PRIORITY CiIRCUIT	Y_{0}

A_{3}	A_{2}	A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Priority Circuit Hardware

Don't Cares

A_{3}	A_{2}	A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}								
0	0	0	0	0	0	0	0								
0	0	0	1	0	0	0	1								
0	0	1	0	0	0	1	0								
0	0	1	1	0	0	1	0								
0	1	0	0	0	1	0	0	A_{3}	A_{2}	A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	1	0	0	0	0	0	1	0	0	0	1
0	1	1	1	0	1	0	0	0				0		1	
1	0	0	0	1	0	0	0	0	0	1	X	0	0	1	0
1	0	0	1	1	0	0	0	0	1	X	X	0	1	0	0
1	0	1	0	1	0	0	0	1	X	X	X	1	0	0	0
1	0	1	1	1	0	0	0								
1	1	0	0	1	0	0	0								
1	1	0	1	1	0	0	0								
1	1	1	0	1	0	0	0								
1	1	1	1	1	0	0	0								

Contention: X

- Contention: circuit tries to drive output to 1 and 0
- Actual value somewhere in between
- Could be 0, 1, or in forbidden zone
- Might change with voltage, temperature, time, noise
- Often causes excessive power dissipation

$$
\begin{aligned}
& A=1-D_{0}-Y=x \\
& B=0-D_{0}-
\end{aligned}
$$

- Warnings:
- Contention usually indicates a bug.
- X is used for "don't care" and contention - look at the context to tell them apart.

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0,1 , or somewhere in between
- A voltmeter won't indicate whether a node is floating

Tristate Buffer

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- $P A+P \bar{A}=P$

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y $A B$				
C	00	01	11	10
0	1	0	0	0
1	1	0	0	0

$\begin{array}{llllll} \\ A B & 00 & 01 & 11 & 10\end{array}$				
	00	01	11	10
0	$\bar{A} \bar{B} \bar{C}$	$\bar{A} B \bar{C}$	$A B \bar{C}$	$A \bar{B} \bar{C}$
1	$\bar{A} \bar{B} C$	$\bar{A} B C$	$A B C$	$A \bar{B} C$

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are not in the circle

A	B	C	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$A B$ 00	01	11	10
$0 \longdiv { 1 }$	0	0	0
1	0	0	0

$\boldsymbol{Y}=\bar{A} \bar{B}$

K-Map Definitions

- Complement: variable with a bar over it
$\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement
$\bar{A}, A, \bar{B}, B, C, \bar{C}$
- Implicant: product of literals
$A \bar{B} C, \bar{A} C, B C$
- Prime implicant: implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

4-Input K-Map

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Y				
$C D$	00	01	11	10
00				
01				
11				
10				

4-Input K-Map

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

4-Input K-Map

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

K-Maps with Don't Cares

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

K-Maps with Don't Cares

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

K-Maps with Don't Cares

A	B	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

$\begin{aligned} & Y \\ & C D \end{aligned}$		01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	X	X
$Y=A+\bar{B} \bar{D}+C$				

Combinational Building Blocks

- Multiplexers
- Decoders

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- $\log _{2} N$-bit select input - control input
- Example:

$D_{0}=0$
$D_{1}=1$

S	D_{1}	D_{0}	Y		S	Y
0	0	0	0		0	D_{0}
0	0	1	1		1	D_{1}
0	1	0	0			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	1			
1	1	1	1			

Multiplexer Implementations

- Logic gates

- Sum-of-products form

${ }^{Y}{ }_{S}^{D_{0} D_{1}}$		01	11	10
0	0	0	1	1
1	0	1	1	0

$$
Y=D_{0} \bar{S}+D_{1} S
$$

- Tristates

- For an N -input mux, use N tristates
- Turn on exactly one to select the appropriate input

Logic using Multiplexers

Using mux as a lookup table

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1
$Y=A B$		

Logic using Multiplexers

Reducing the size of the mux

Decoders

- N inputs, 2^{N} outputs
- One-hot outputs: only one output HIGH at once

A_{1}	A_{0}	Y_{3}	Y_{2}	Y_{1}	Y_{0}
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder Implementation

Logic Using Decoders

OR minterms

