E85 Digital Design & Computer Engineering

Lecture 2:

Combinational Logic
Design

HARVEY

MUDD

COLLEGE

Application |>"he
Software

hello
world
Operating
Systems
I —
I
I —

* Introduction

* Boolean Equations

* Boolean Algebra

* From Logic to Gates

* Multilevel Combinational Logic

Architecture

Micro- <+
architecture <>

* X’sand Z’s, Oh My i.g
* Karnaugh Maps D
* Combinational Building Blocks .

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <2>

Introduction

A logic circuit is composed of:
* |nputs

* Qutputs

* Functional specification

* Timing specification

()
¥ functional spec

iInputs >

—» timing spec
- y,

S outputs

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <3>

Circuits

* Nodes
— lnputs: A, B, C g N
— Outputs: Y, Z A g1 |
—
— Internal: n1 B P— 18 Jpv
L C E2 > 7
e Circuit elements —)
—E1, E2, E3

— Each a circuit

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <4>

Types of Logic Circuits

 Combinational Logic

— Memoryless

— Outputs determined by current values of inputs

* Sequential Logic

— Has memory

— Outputs determined by previous and current values

of inputs

-
- functional spec

inputs —»

—» timing spec
\

~

_>

J

Digital Design and Computer Architecture: ARM® Edition © 2015

outputs

Lecture 2 <5>

Rules of Combinational Composition

* Every element is combinational

* Every node is either an input or connects
to exactly one output

* The circuit contains no cyclic paths

il
=i

e Example:

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <6>

Boolean Equations

* Functional specification of outputs in terms
of inputs
* Example: S =FA, B,C,)
C..t = F(A, B, C,)

A [\—
B—-@.__g
Cin—\) out

S =A®B@®C,
C,, =AB+AC, +BC,

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <7>

Some Definitions

 Complement: variable with a bar over it
A, B,C

 Literal: variable or its complement
A A B,B,C,C

* Implicant: product of literals
ABC, AC, BC

* Minterm: product that includes all input variables
ABC, ABC, ABC

 Maxterm: sum that includes all input variables
(A+B+C), (A+B+C), (A+B+C)

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <8>

Sum-of-Products (SOP) Form

e All equations can be written in SOP form
e Each row has a minterm

minterm
A B | Y | minterm| name
0 0|0 AB m,
0 1|1 A B m,
1 010 AB m,
1 1|1 A B m,

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <9>

Sum-of-Products (SOP) Form

All equations can be written in SOP form

Each row has a minterm
A minterm is a product (AND) of literals

Each minterm is TRUE for that row (and only that row)

minterm
A B | Y | minterm| name
0 0|0 AB m,
0 1|1 A B m,
1 0|0 AB m,
1 111 A B m,

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <10>

ELSEVIER

Sum-of-Products (SOP) Form

All equations can be written in SOP form

Each row has a minterm
A minterm is a product (AND) of literals

Each minterm is TRUE for that row (and only that row)
Form function by ORing minterms where outputis 1
Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0|0 AB m,
0 1|1 A B m,
1 0|0 AB m,
1 111 A B m,

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <11>

ELSEVIER

Sum-of-Products (SOP) Form

All equations can be written in SOP form

Each row has a minterm

A minterm is a product (AND) of literals

Each minterm is TRUE for that row (and only that row)
Form function by ORing minterms where outputis 1
Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0o AB m,
Co 111 A B m,)
1 0] 0 AB m,
C1 1|1 A B m,)

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <12>

ELSEVIER

Sum-of-Products (SOP) Form

e All equations can be written in SOP form

e Each row has a minterm

e A minterm is a product (AND) of literals

e Each minterm is TRUE for that row (and only that row)
e Form function by ORing minterms where output is 1

e Thus, a sum (OR) of products (AND terms)

minterm
A B | Y | minterm| name
0 0 0 A B "
Co 1|1 A B m,)
1 0 0 A B .
C1 1|1 A B m,)
Y=F(4, B)=AB+AB=X(1, 3)

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <13>

Product-of-Sums (POS) Form

e All Boolean equations can be written in POS form
e Each row has a maxterm

maxterm
A B | Y | maxterm| name
o oflo|la+B M,)
0 1| 1]|a+B M,
(1 o] o0o]|A+B M,)
1 1|1 |A+B M,

Lecture 2 <14>

Product-of-Sums (POS) Form

e All Boolean equations can be written in POS form

e Each row has a maxterm

e A maxterm is a sum (OR) of literals

e Each maxterm is FALSE for that row (and only that row)

maxterm
A B | Y | maxterm| name
(0 o|o0o]|a+B M,)
0 1|1]la+3B M,
(1 o] o0o]|A+B M,)
1 1|1|Aa+B M,

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <15>

ELSEVIER

Product-of-Sums (POS) Form

All Boolean equations can be written in POS form

Each row has a maxterm

A maxterm is a sum (OR) of literals

Each maxterm is FALSE for that row (and only that row)
Form function by ANDing maxterms where output is 0
Thus, a product (AND) of sums (OR terms)

maxterm
maxterm name

)

M,

Rlo|F oK
g
|
o
<

B
B
B M
A

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <16>

ELSEVIER

Boolean Equations Example

* You are going to the cafeteria for lunch
— You won’t eat lunch (E)

— If it’s not open (6) or
— If they only serve corndogs (C)

* Write a truth table for determining if you

will eat lunch (E). O C | E
0 0
0 1
1 0
1 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <17>

Boolean Equations Example

* You are going to the cafeteria for lunch
— You won’t eat lunch (E)
— If it’s not open (6) or
— If they only serve corndogs (C)

 Write a truth table for determining if you

will eat lunch (E). O C | E
0 0 0
0 1 0
1 0 1
1 1 0

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <18>

SOP & POS Form

SOP - sum-of-products

O C | E | minterm
0 0 0 C
0 1 O C
1 0 O C
1 1 O C

POS — product-of-sums
O C | E | maxterm

0 0 O + C

= = O
= O
ol ol ©
+ + +
Ol Q Q)|

Lecture 2 <19>

ELSEVIER

SOP & POS Form

SOP - sum-of-products

O C | E | minterm
0 0] 0 0 C L
o 1] o0 D C E=0C
@ 0|1 0 C) =X(2)
1 1] 0 0 C
POS — product-of-sums
O C | E | maxterm
(0 o |[0]o+C) _
© 1]lo0o|lo+cCc) E=0OF+0O)0+0O)(0+0)
1 0 1 |0 + C = T1(0. 1. 3
@ 1|00+ . 1,3)

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <20>

Boolean Algebra

* Axioms and theorems to simplify Boolean
equations

* Like regular algebra, but simpler: variables
have only two values (1 or 0)

* Duality in axioms and theorems:
—ANDs and ORs, O’s and 1’s interchanged

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <21>

Boolean Axioms

Number Axiom Name

Al B=0ifB#1 Binary Field
A2 0=1 NOT

A3 0¢0=0 AND/OR
A4 l1e1=1 AND/OR
A5 Oel1=1¢0=0 AND/OR

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <22>

Boolean Axioms

Number Axiom Name

Al B=0ifB#1 Binary Field
A2 0=1 NOT

A3 0¢0=0 AND/OR
A4 l1e1=1 AND/OR
A5 Oel1=1¢0=0 AND/OR

Dual: Replace: e with +
0 with 1

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <23>

Boolean Axioms

Number Axiom Dual Name
Al B=0ifB#1 B=1ifB#0 Binary Field
A2 0=1 1=0 NOT

A3 0¢0=0 1+1=1 AND/OR
A4 l1e1=1 0+0=0 AND/OR
A5 Oel=1¢0=0 |[1+0=0+1=1 |AND/OR

Dual: Replace: e with +
O with 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <24>

Boolean Theorems of One Variable

Number Theorem Name

T1 Bel=B ldentity

T2 BeO=0 Null Element

T3 BeB=B ldempotency

T4 B=B Involution

T5 BeB=0 Complements

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <25>

ELSEVIER

Boolean Theorems of One Variable

Number Theorem Name

T1 Bel=B ldentity

T2 BeO=0 Null Element

T3 BeB=B ldempotency
T4 B=B Involution

T5 BeB=0 Complements

Dual: Replace: e with +
O with 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <26>

Boolean Theorems of One Variable

Number Theorem Dual Name

T1 Bel=B B+0=B ldentity

T2 Be0O=0 B+1=1 Null Element

T3 BeB=B B+B=8B Idempotency
T4 B=8B Involution

T5 BeB=0 B+B=1 Complements

Dual: Replace: e with +
O with 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <27>

T1: Identity Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <28>

ELSEVIER

T1: Identity Theorem

o

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <29>

£

ELSEVIER

T2: Null Element Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <30>

ELSEVIER

T2: Null Element Theorem

—

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <31>

R

ELSEVIER

T3: Idempotency Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <32>

ELSEVIER

T3: Idempotency Theorem

o @

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <33>

FgN

ELSEVIER

T4: Identity Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <34>

A

ELSEVIER

T4: Identity Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <35>

ELSEVIER

T5: Complement Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <36>

ELSEVIER

T5: Complement Theorem

| ™
Il
o

| W
[l

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <37>

ELSEVIER

Boolean Theorems of Several Vars

Number Theorem Name

T6 BeC=CeB Commutativity

T7 (BeC) e D=B e (Ce D) Associativity

T8 Be(C+D)=(BeC)+(BeD) |Distributivity

T9 Be (B+C) =B Covering

T10 (BeC) + (BeC) =B Combining

T11 (BeC) + (BeD) + (CeD) = Consensus
(BeC) + (BeD)

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <38>

Boolean Theorems of Several Vars

Number Theorem Name

T6 BeC=CeB Commutativity

T7 (BeC) e D=B e (Ce D) Associativity

T8 Be(C+D)=(BeC)+(BeD) |Distributivity

T9 Be (B+C) =B Covering

T10 (BeC) + (BeC) =B Combining

T11 (BeC) + (BeD) + (CeD) = Consensus
(BeC) + (BeD)

How do we prove these are true?

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <39>

e Method 1: Perfect induction

e Method 2: Use other theorems and axioms
to simplify the equation

— Make one side of the equation look like
the other

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <40>

Proof by Perfect Induction

e Also called: proof by exhaustion
e Check every possible input value

e |f two expressions produce the same value
for every possible input combination, the
expressions are equal

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <41>

Example: Proof by Perfect Induction

Number Theorem
T6 BeC =CeB Commutativity

BC CB

_ = O O M
~ O KRk Ol

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <42>

ELSEVIER

Example: Proof by Perfect Induction

Number Theorem
T6 BeC =CeB Commutativity

B C| BC CB
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <43>

ELSEVIER

T7: Associativity

Number Theorem
T7 (BeC)e D=B e (Ce D) Associativity

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <44>

T8: Distributivity

Number Theorem
T8 Be(C+D)=(BeC)+(BeD) |Distributivity

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <45>

ELSEVIER

T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <46>

ELSEVIER

T9: Covering

Number Theorem

T9 Be (B+C) =B Covering

Prove true by:
e Method 1: Perfect induction
e Method 2: Using other theorems and axioms

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <47>

T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 1: Perfect Induction

(B+C) B(B+C)

= O O |l
m O R Ol

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <48>

T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 1: Perfect Induction

B C| (B+C) B(B+(C)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <49>

T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 1: Perfect Induction

B C| (B+C) |B(B+(C)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <50>

T9: Covering

Number Theorem
T9 Be (B+C) =B Covering

Method 2: Prove true using other axioms and
theorems.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <51>

ELSEVIER

T9: Covering

Number Theorem

T9 Be (B+C) =B Covering
Method 2: Prove true using other axioms and
theorems.

Be(B+C) = BeB + BeC T8: Distributivity
=B+ BeC T3: Idempotency
= Be(1 + C) T8: Distributivity
= Be(1) T2: Null element
=B T1: Identity

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <52>

T10: Combining

Number Theorem
T10 (BeC) + (BeC) =B Combining

Prove true using other axioms and theorems:

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <53>

ELSEVIER

T10: Combining

Number Theorem

T10 (BeC) + (BeC) =B Combining

Prove true using other axioms and theorems:

BeC+BeC =Be(C+C) T8: Distributivity
= Be(1) T5”: Complements
=B T1: Identity

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <54>

T11: Consensus

Number Theorem

T11 (BeC) + (BeD) + (CeD) = Consensus
(BeC) + (BeD)

Prove true using (1) perfect induction or (2)
other axioms and theoremes.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <55>

Boolean Theorems of Several Vars

#

Theorem

Dual

Name

T6 BeC =CeB B+C =C+B Commutativity
T7 (BeC) e D=B ¢ (CeD) (B+C)+D=B+(C+D) Associativity
T8 |Be(C+D)=(BeC)+(BeD) |B+(CeD)=(B+C) (B+D) Distributivity
T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 | (BeC) + (BeC) =B (B+C) ¢ (B+C) =B Combining
T11 | (BeC) + (BeD) + (CeD) = (B+C) ® (B+D) (C+D) = Consensus

(BeC) + (BeD)

(B+C) ¢ (B+D)

Dual: Replace: e with +

O with 1

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <56>

ELSEVIER

Boolean Theorems of Several Vars

#

Theorem

Dual

Name

T6 BeC =CeB B+C =C+B Commutativity
T7 (BeC) e D=B ¢ (CeD) (B+C)+D=B+(C+D) Associativity
T8 |Be(C+D)=(BeC)+(BeD) |B+(CeD)=(B+C) (B+D) Distributivity
T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 | (BeC) + (BeC) =B (B+C) ¢ (B+C) =B Combining
T11 | (BeC) + (BeD) + (CeD) = (B+C) ® (B+D) (C+D) = Consensus

(BeC) + (BeD)

(B+C) ¢ (B+D)

Warning: T8’ differs from traditional algebra:
OR (+) distributes over AND ()

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <57>

ELSEVIER

Boolean Theorems of Several Vars

Theorem Dual Name

T6 BeC =CeB B+C =C+B Commutativity

T7 (BeC) e D=B ¢ (CeD) (B+C)+D=B+(C+D) Associativity

T8 |Be(C+D)=(BeC)+(BeD) |B+(CeD)=(B+C) (B+D) Distributivity

T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 | (BeC) + (BeC) =B (B+C) ¢ (B+C) =B Combining

T11 | (BeC)+ (BD) +(CeD)= (B+C) o (E+D) ¢ (C+D) = Consensus
(BeC) + (BeD) (B+C) ¢ (B+D)

Axioms and theorems are useful for simplifying equations.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <58>

Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <59>

Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Recall:

— Implicant: product of literals
ABC, AC, BC

— Literal: variable or its complement
A ABB,CC

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <60>

Simplifying an Equation

Reducing an equation to the fewest number
of implicants, where each implicant has the
fewest literals

Recall:

— Implicant: product of literals
ABC, AC, BC

— Literal: variable or its complement
A ABB,CC

Also called minimizing the equation

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <61>

Simplification methods

* Distributivity (T8, T8’) B(C+D)=BC+BD
B + CD = (B+ C)(B+D)

« Covering (T9’) A+AP=A

* Combining (T10) PA+PA=P

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <62>

Simplification methods

* Distributivity (T8, T8’) B(C+D)=BC+BD
B + CD = (B+ C)(B+D)

 Covering (T9’) A+AP=A
* Combining (T10) PA+PA=P
 Expansion P = PA + PA
A=A+AP
 Duplication A=A+A

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <63>

Simplification methods

* Distributivity (T8, T8’) B(C+D)=BC+BD
B + CD = (B+ C)(B+D)

 Covering (T9’) A+AP=A
* Combining (T10) PA+PA=P
 Expansion P = PA + PA
A=A+AP
 Duplication A=A+A

* “Simplification” theorem PA+A=P+A
PA+A=P+A

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <64>

ELSEVIER

T11: Consensus

Number Theorem Name

T11

(BeC) + (BeD) + (CeD) =
(BeC) + (BeD)

Consensus

Prove using other theorems and axioms:

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <65>

T11: Consensus

Number Theorem Name

T11

(BeC) + (BeD) + (CeD) =
(BeC) + (BeD)

Consensus

Prove using other theorems and axioms:

BeC + BeD + CD

=BC + BD + (CDB+CDB)
=BC + BD + BCD+BCD
=BC + BCD +BD + BCD

= (BC + BCD) + (BD + BCD)
=BC + BD

T10: Combining
T6: Commutativity
T6: Commutativity
T7: Associativity
T9’: Covering

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <66>

Simplifying Boolean Equations

Example 1:
Y=AB + AB

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <67>

Simplifying Boolean Equations

Example 1:

Y=AB +AB
Y=A T10: Combining

or
=A(B+ B) T8: Distributivity
= A(1) T5": Complements
= 1: Identity

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <68>

Simplifying Boolean Equations

Example 2:
Y = A(AB + ABC)

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <69>

ELSEVIER

Simplifying Boolean Equations

Example 2:
Y = A(AB + ABC)

= A(AB(1 + ()) T8: Distributivity
= A(AB(1)) T2”: Null Element
= A(AB) T1: Identity

= (AA)B T7: Associativity

= AB T3: Idempotency

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <70>

DeMorgan’s Theorem

Number Theorem

T12 B,*B,*B,... = B+B;+B,... DeMorgan’s
Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <71>

DeMorgan’s Theorem

Number Theorem

T12 B,*B,*B,... = B+B;+B,... DeMorgan’s
Theorem

The complement of the product
is the
sum of the complements

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <72>

ELSEVIER

DeMorgan’s Theorem: Dual

Theorem Dual
T12 ByeB,*B,... = B,+B,+B,... = DeMorgan’s
B,+B,+B,... B,*B,*B,... Theorem

The complement of the product
is the
sum of the complements.

Dual: The complement of the sum
is the
product of the complements.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <73>

DeMorgan’s Theorem Example 1

Y = (A+BD)C

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <74>

ELS

DeMorgan’s Theorem Example 1

Y = (A+BD)C
= (A+BD) + C
= (Ae(BD)) + C
= (Ae(BD)) + C
=ABD + C

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <75>

ELSEVIER

DeMorgan’s Theorem Example 2

Y = (ACE+D) + B

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <76>

ELSEVIER

DeMorgan’s Theorem Example 2

Y = (ACE+D) + B

= (ACD + DE) * B
= ABCD + BDE

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <77>

DeMorgan’s Theorem

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <78>

Bubble Pushing

e Backward:

— Body changes
— Adds bubbles to inputs

A
B(}D—Y

 Forward:

— Body changes
— Adds bubble to output

o >
~<

A
B

J
C;

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <79>

ELSEVIER

Bubble Pushing

e What is the Boolean expression for this
circuit?

=

SO W>
|

B
s

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <80>

Bubble Pushing

e What is the Boolean expression for this
circuit?

i@
==

Y=AB+ CD

SO W>
|

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <81>

ELSEVIER

Bubble Pushing Rules

e Begin at output, then work toward inputs
e Push bubbles on final output back

e Draw gates in a form so bubbles cancel

EalSNEe

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <82>

Bubble Pushing Example

Y
v

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <83>

ELSEVIER

Bubble Pushing Example

no output
bubble

o O >
~<

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <84>

ELSEVIER

Bubble Pushing Example

no output
A D——L bubble
B
C Y
D |

bubble on

A input and output
B
C Y
D

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <85>

£

ELSEVIER

Bubble Pushing Example

no output
A :D@_\\ bubble
B
C Y
D |

bubble on

A input and output
B
C Y
D |

no bubble on

A input and output
D]

Digital Design and Computer Architecture: ARM® Edition © 2015

Lecture 2 <86>

Y

ELSEVIER

From Logic to Gates

* Two-level logic: ANDs followed by ORs
e Example: Y=ABC+ ABC + ABC

A B C
VA VB —YC
} minterm: ABC
D minterm: ABC
D minterm: ABC
Y

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <87>

ELSEVIER

Circuit Schematics Rules

* |nputs on the left (or top)

e Qutputs on right (or bottom)
* Gates flow from left to right
e Straight wires are best

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <88>

Circuit Schematic Rules (cont.)

* Wires always connect at a T junction

e A dot where wires cross indicates a
connection between the wires

* Wires crossing without a dot make no

connection wires crossing
wires connect wires connect without a dot do
ata T junction at a dot not connect

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <89>

Multiple-Output Circuits

* Example: Priority Circuit

A, A A ALY, Y, Y, Y,
Output asserted R
: 0O 0 0 1
corresponding to most 00 18
significant TRUE input 0O 0 1 1
5 P 0O 1 0 O
0 1 0 1
Y 0 1 1 0
& ° o 1 1 1
— V| — 1 0 0 O0
& 2 1 0 0 1
— Y —— 1 0 1 0
A 1 1 0 1 1
— A Y —— 1 1 0 0
PRIORITY i % 2 (1)
CilRCUIT T 11 1

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <90>

Multiple-Output Circuits

* Example: Priority Circuit

A, A A ALY, Y, Y, Y,

Output asserted A
corresponding to most c 0 0 10 0 0 1
O 0 1 0|0 O 1 o0

significant TRUE input O 0 1 1|0 0 1 o0
o 1 0 0|0 1 0 O

o 1 0 1/0 1 0 O

A, Y, 0 1 1 ofl0 1 0 O

o 1 1 1/0 1 0 O

— A Y, 1 0 0 o1 0 0 O

1 0 0 1|1 o0 0 O

—1A, Y, 1 0 1 0|1 0 0 O

1 0 1 1|1 o0 0 O

—— A Y, —— 1 1 0 ofl1 0 0 O
PRIORITY 1 1 0 1|1 o0 0 O

CilRCUIT 11 1 01 0 0 O

1 1 1 1|1 o0 0 O

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <91>

Lecture 2 <92>

OCOO0COrHrHtIHOOOOOOOO

o
<

Q <

S <

(qe] X

= A

S %0100000000000000

(V) _

H MNXOOHHOOOOOOOOOOOO

e

Ys Y,

OO0 0O OO0 mmrdrdrd vl

OrliOrH O HOHO-HOHOAO

>
O
=

Ay

<loco-H-HoO-HOOAHOOH H

ty C

N
OO OO H A rrHOOOO

<jlooocoocoococoocooHdH A

LN
i
o
(q\l
©
[
e
=
o
(NN}
®
P
o
<
o
—
>
o+
O
()
=
O
—
<<
—
(]
-+
>
o
€
(@)
O
©
C
©
[
.20
(%]
()
(@]
©
S=
2
()

|OT1

Pr

Or-OOCO

Yo

Sloo-Hoo

A

sVoooHoO A
<

(9] @\l

vi]jooood >

S g

IO+ X X X =

<|looH X X

A,

QOO X

QOO OH

A

OriOO0O 000000000000

Y,

£

OCOrIrmiOOOO0OO0O0O0O00O00O0O0O

OCOO0COrHrHtIHOOOOOOOO

Ys Y,

OO0 0O OO0 mmrdrdrd vl

OrliOrH O HOHO-HOHOAO

Ay

<loco-H-HoO-HOOAHOOH H

N
OO OO H A rrHOOOO

LN
i
o
(q\l
©
[
e
=
o
(NN}
®
P
o
<
o
—
>
o+
O
()
=
O
—
<<
—
(]
-+
>
o
€
(@)
O
©
C
©
[
.20
(%]
()
(@]
©
S=
2
()

<jlooocoocoococoocooHdH A HdHH

(Vg
Q
—
(O
@
L
C
O
)

Contention: X

e Contention: circuit tries to drive outputto 1 and O
— Actual value somewhere in between
— Could be 0, 1, or in forbidden zone

— Might change with voltage, temperature, time, noise
— Often causes excessive power dissipation

A=1 >0

—Y =X

B =04 >—
* Warnings:
— Contention usually indicates a bug.

— Xis used for “don’t care” and contention - look at the context
to tell them apart.

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <94>

Floating: Z

* Floating, high impedance, open, high Z

* Floating output might be 0, 1, or
somewhere in between

— A voltmeter won’t indicate whether a node is floating
Tristate Buffer

Lecture 2 <95>

ELSEVIER

Tristate Busses

Floating nodes are used in tristate
busses

— Many different drivers

— Exactly one is active at once

Digital Design and Computer Architecture: ARM® Edition © 2015

-
processor ent

Aye

\§

J

to bus
frombus
N
(.
video en2
tobus —[}—|
frombus {]—'

|\

tobus

frombus
_

%thernet en3 |

sngpaJeys

AY

[\

-
memory en4

tobus

frombus
_

Ayt

-

Lecture 2 <96>

Karnaugh Maps (K-Maps)

* Boolean expressions can be minimized by
combining terms

* K-maps minimize equations graphically
* PA+PA=P

A B C|Y Y Y
0 0 o0 |1 AB AB

o o 11 c 00 01 11 10 c\._ 00 01 11 10
0 1 0 0 _ | - —
o 1 1| o0 o 1 0 0 0 0| ABC | ABC | ABC | ABC
1 0 0 0

1 0 1 0 - - _
1 1 olo 11 1 0 0 0 1| ABC | ABC | ABC | ABC
1 1 1 0

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <97>

ELSEVIER

K-Map

e Circle 1's in adjacent squares

e In Boolean expression, include only literals
whose true and complement form are not

in the circle
A B C|vY Y AB
O 0 0|1 00 01 11 10
o 0 1|1 C
0 1 0 0
O 0 m o | 0 | 0
1 0 0 0
1 0 1 0
1 1 0|0 1 1 0 0 0
1 1 1 0

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <98>

K-Map Definitions

e Complement: variable with a bar over it

 Literal: variable or its complement

A A B,B,CC

* Implicant: product of literals
ABC, AC, BC

* Prime implicant: implicant corresponding to
the largest circle in a K-map

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <99>

K-Map Rules

* Every 1 must be circled at least once

e Each circle must span a power of 2 (i.e. 1, 2,
4) squares in each direction

* Each circle must be as large as possible
* A circle may wrap around the edges

 A“don't care” (X) is circled only if it helps
minimize the equation

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <100>

ELSEVIER

10

11
Lecture 2 <101>

01

00

AB
CD
00

10

01
11

C D|Y
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

LN
i
o
(q\l
©
[
e
=
o
(NN}
®
P
o
<
5
—
>
o+
O
()
=
O
—
<<
—
(]
-+
>
o
€
(@)
O
©
C
©
[
.20
(%]
()
(@]
©
S=
2
()

O
(O
<
A
s
-
O
=
|

A

ELSEVIER

N\
Ol «~ | «~ | O | = N
e S
VvV
(@]
[}
— 5
10000 B
Q
—
m0111
m1011
g
~ 8 & = 2
Lo
Q
> 0O

C D|Y
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

LN
i
o
(q\l
©
[
e
=
o
(NN}
®
P
o
<
o
—
>
o+
O
()
=
O
—
<<
—
(]
-+
>
o
€
(@)
O
©
C
©
[
.20
(%]
()
(@]
©
S=
2
()

O
(O
<
A
s
-
O
=
|

A

4-Input K-Map

Digital Design and Computer Architecture: ARM® Edition © 2015

A B C D|Y y

o 0 0 0|1 AB

0 0 0 1 0 CD 00 01 11 10
o 0 1 0|1 —
0 0 1 1 1 00 1 0 0 1

O 1 0 o010

o 1 0 1 |1 —

o 1 1 0|1 01 O 1 0 1
o 1 1 1|1 —
1 0 0 0|1 p N

1 0 0 1 1 11 1 1 0 0
1 0 1 o0 |1 N

1 0 1 11]0

1 1 0 0 0 10 1 1 0 1
1 1 O 1|0 \ -

1 1 1 010

1 1 1 1 0 Y=AC+ ABD + ABC + BD

Lecture 2 <103>

ELS

K-Maps with Don’t Cares

A B C D Y Y

0 o0 o0 o0 |1 AB
0 0 0 1 0 CD 00 01 11 10
0o o0 1 0|1

o o0 1 1 |1 00
o 1 0 0] o0

0o 1 0 1| X

o 1 1 0|1 01
o 1 1 1|1

1 0 0 0|1

1 0 o0 1|1 1

1 0 1 0| x

1 0 1 1| ¢X

1 1 0 0] x 10
1 1 0 1| x

1 1 1 0| X

1 1 1 1| x

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <104>

ELSEVIER

K-Maps with Don’t Cares

A B C D|Y Y

0 0 0 0 1 AB

o 0o o 11 o0 CD 00 01 11 10
0 0 1 0 1

o o 1 1|1 00 1 0 X 1
0 1 0 0 0

0 1 0 1 X

o 1 1 o0 |1 01 O X X 1
0 1 1 1 1

1 0 0 0 1

1 0 o 111 11 1 1 X X
1 0 1 0 X

1 0 1 1 X

1 1 o0 o lx 10[1 1 X X
1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <105>

ELSEVIER

K-Maps with Don’t Cares

A B C D Y Y

0 0 0 0 1 AB

0 0 0 1 0 CD 00 01 11 10
0 0 1 0 1

0 0 1 1 1 00 1 0 X 1
0 1 0 0 0

0 1 0 1 X

0 1 1 0 1 01 0 X X 1
0 1 1 1 1

1 0 0 0 1 e

1 0 0 1 1 11 1 1 X X
1 0 1 0 X

1 0 1 1 X

1 1 0 0 % 10 1 1 X X
1 1 0 1| X -

1 1 1 0 X o

1 1 1 1 X Y=A+BD+C

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <106>

ELSEVIER

Combinational Building Blocks

* Multiplexers
e Decoders

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <107>

ELSEVIER

Multiplexer (Mux)

e Selects between one of N inputs to connect
to output

* log,N-bit select input — control input

 Example: 2:1 Ié/lux

O

-
o

PR R oo ooy
rroorrooll

PO RrkroOoOr OFr O

Lecture 2 <108>

Multiplexer Implementations

* Logic gates e Tristates
— Sum-of-products form — For an N-input mux, use N
Y 0,0, tristates

(0] o 11 10
— Turn on exactly one to

I ED select the appropriate
11 0 ED 0 input
S

Y=D,S+D,S

D, _}_ %
A
=

v

S

S
D

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <109>

ELSEVIER

Logic using Multiplexers

Using mux as a lookup table

R~ o ol

~ o ol
— o o ol

Y=AB
AB

00

01
10 Y

11

Lecture 2 <110>

ELSEVIER

Logic using Multiplexers

Reducing the size of the mux

A BlYy AlY i
0 0 0)
e SO 0|
i L V1% @dIB® B
VIS Y B -

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <111>

ELSEVIER

Decoders

e Ninputs, 2V outputs
* One-hot outputs: only one output HIGH at once

2:4
Decoder

M—Y,

Ay — 10— Y,

A, — 01—,

00 — Y,
A1 AO y3 y2 y1 YO
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <112>

ELSEVIER

Decoder Implementation

JIUL

Digital Design and Computer Architecture: ARM® Edition © 2015 Lecture 2 <113>

ELSEVIER

Logic Using Decoders

OR minterms

2:4
Decoder Minterm
11 AB
A 10 AB
B — 01 AB
00 AB

Lecture 2 <114>

