
Lecture 18:
Function Calls &
Machine Language

E85 Digital Design & Computer Engineering

Lecture 18 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

• Function Calls
• Machine Language

Lecture 18

Lecture 18 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

Programming Building Blocks
• Data-processing Instructions
• Conditional Execution
• Branches
• High-level Constructs:

§ if/else statements
§ for loops
§ while loops
§ arrays
§ function calls

Lecture 18 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller: calling function (in this case, main)
• Callee: called function (in this case, sum)

C Code
void main()
{

int y;
y = sum(42, 7);
...

}

int sum(int a, int b)
{

return (a + b);
}

Function Calls

Lecture 18 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller:
– passes arguments to callee
– jumps to callee

Function Conventions

Lecture 18 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller:
– passes arguments to callee
– jumps to callee

• Callee:
– performs the function
– returns result to caller
– returns to point of call
– must not overwrite registers or memory needed by

caller

Function Conventions

Lecture 18 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

• Call Function: branch and link
BL

• Return from function: move the link register
to PC: MOV PC, LR

• Arguments: R0-R3
• Return value: R0

ARM Function Conventions

Lecture 18 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int main() {

simple();
a = b + c;

}

void simple() {
return;

}

ARM Assembly Code
0x00000200 MAIN BL SIMPLE
0x00000204 ADD R4, R5, R6
...

0x00401020 SIMPLE MOV PC, LR

Function Calls

void means that simple doesn’t return a value

Lecture 18 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int main() {

simple();
a = b + c;

}

void simple() {
return;

}

BL branches to SIMPLE
LR = PC + 4 = 0x00000204

MOV PC, LR makes PC = LR
(the next instruction executed is at 0x00000200)

ARM Assembly Code
0x00000200 MAIN BL SIMPLE
0x00000204 ADD R4, R5, R6
...

0x00401020 SIMPLE MOV PC, LR

Function Calls

Lecture 18 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM conventions:
• Argument values: R0 - R3
• Return value: R0

Input Arguments and Return Value

Lecture 18 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int main()
{
int y;
...
y = diffofsums(2, 3, 4, 5); // 4 arguments
...

}

int diffofsums(int f, int g, int h, int i)
{
int result;
result = (f + g) - (h + i);
return result; // return value

}

Input Arguments and Return Value

Lecture 18 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R4 = y
MAIN

...
MOV R0, #2 ; argument 0 = 2
MOV R1, #3 ; argument 1 = 3
MOV R2, #4 ; argument 2 = 4
MOV R3, #5 ; argument 3 = 5
BL DIFFOFSUMS ; call function
MOV R4, R0 ; y = returned value
...

; R4 = result
DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) - (h + i)
MOV R0, R4 ; put return value in R0
MOV PC, LR ; return to caller

Input Arguments and Return Value

Lecture 18 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R4 = result
DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) - (h + i)
MOV R0, R4 ; put return value in R0
MOV PC, LR ; return to caller

• diffofsums overwrote 3 registers: R4, R8, R9
•diffofsums can use stack to temporarily store registers

Input Arguments and Return Value

Lecture 18 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory used to temporarily
save variables

• Like stack of dishes, last-in-
first-out (LIFO) queue

• Expands: uses more memory
when more space needed

• Contracts: uses less memory
when the space no longer
needed

The Stack

Lecture 18 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• Grows down (from higher to lower memory
addresses)

• Stack pointer: SP points to top of the stack

The Stack

Stack expands by 2 words

Lecture 18 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

• Called functions must have no unintended
side effects

• But diffofsums overwrites 3 registers: R4,
R8, R9

ARM Assembly Code
; R4 = result
DIFFOFSUMS

ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) - (h + i)
MOV R0, R4 ; put return value in R0
MOV PC, LR ; return to caller

How Functions use the Stack

Lecture 18 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R2 = result
DIFFOFSUMS

SUB SP, SP, #12 ; make space on stack for 3 registers
STR R4, [SP, 8] ; save R4 on stack
STR R8, [SP, #4] ; save R8 on stack
STR R9, [SP] ; save R9 on stack
ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) - (h + i)
MOV R0, R4 ; put return value in R0
LDR R9, [SP] ; restore R9 from stack
LDR R8, [SP, #4] ; restore R8 from stack
LDR R4, [SP, #8] ; restore R4 from stack
ADD SP, SP, #12 ; deallocate stack space
MOV PC, LR ; return to caller

Storing Register Values on the Stack

Lecture 18 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

Before call During call After call

The Stack during diffofsums Call

Lecture 18 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

Preserved
Callee-Saved

Nonpreserved
Caller-Saved

R4-R11 R12

R14 (LR) R0-R3

R13 (SP) CPSR

stack above SP stack below SP

Registers

Lecture 18 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R2 = result
DIFFOFSUMS

STR R4, [SP, #-4]! ; save R4 on stack
ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) - (h + i)
MOV R0, R4 ; put return value in R0
LDR R4, [SP], #4 ; restore R4 from stack
MOV PC, LR ; return to caller

Storing Saved Registers only on Stack

Lecture 18 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
; R2 = result
DIFFOFSUMS

STR R4, [SP, #-4]! ; save R4 on stack
ADD R8, R0, R1 ; R8 = f + g
ADD R9, R2, R3 ; R9 = h + i
SUB R4, R8, R9 ; result = (f + g) - (h + i)
MOV R0, R4 ; put return value in R0
LDR R4, [SP], #4 ; restore R4 from stack
MOV PC, LR ; return to caller

Notice code optimization for expanding/contracting stack

Storing Saved Registers only on Stack

Lecture 18 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
STR LR, [SP, #-4]! ; store LR on stack
BL PROC2 ; call another function
...
LDR LR, [SP], #4 ; restore LR from stack
MOV PC, LR ; return to caller

Nonleaf Function

Lecture 18 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int f1(int a, int b) {
int i, x;
x = (a + b)*(a − b);
for (i=0; i<a; i++)

x = x + f2(b+i);
return x;

}
int f2(int p) {
int r;
r = p + 5;
return r + p;

}

Nonleaf Function Example

Lecture 18 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int f1(int a, int b) {
int i, x;

x = (a + b)*(a − b);
for (i=0; i<a; i++)

x = x + f2(b+i);
return x;

}

int f2(int p) {
int r;

r = p + 5;
return r + p;

}

Nonleaf Function Example
ARM Assembly Code
; R0=a, R1=b, R4=i, R5=x
F1
PUSH {R4, R5, LR}
ADD R5, R0, R1
SUB R12, R0, R1
MUL R5, R5, R12
MOV R4, #0

FOR
CMP R4, R0
BGE RETURN
PUSH {R0, R1}
ADD R0, R1, R4
BL F2
ADD R5, R5, R0
POP {R0, R1}
ADD R4, R4, #1
B FOR

RETURN
MOV R0, R5
POP {R4, R5, LR}
MOV PC, LR

; R0=p, R4=r
F2
PUSH {R4}
ADD R4, R0, 5
ADD R0, R4, R0
POP {R4}
MOV PC, LR

Lecture 18 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

Nonleaf Function Example
ARM Assembly Code
; R0=a, R1=b, R4=i, R5=x
F1
PUSH {R4, R5, LR} ; save regs
ADD R5, R0, R1 ; x = (a+b)
SUB R12, R0, R1 ; temp = (a-b)
MUL R5, R5, R12 ; x = x*temp
MOV R4, #0 ; i = 0

FOR
CMP R4, R0 ; i < a?
BGE RETURN ; no: exit loop
PUSH {R0, R1} ; save regs
ADD R0, R1, R4 ; arg is b+i
BL F2 ; call f2(b+i)
ADD R5, R5, R0 ; x = x+f2(b+i)
POP {R0, R1} ; restore regs
ADD R4, R4, #1 ; i++
B FOR ; repeat loop

RETURN
MOV R0, R5 ; return x
POP {R4, R5, LR} ; restore regs
MOV PC, LR ; return

; R0=p, R4=r
F2
PUSH {R4} ; save regs
ADD R4, R0, 5 ; r = p+5
ADD R0, R4, R0 ; return r+p
POP {R4} ; restore regs
MOV PC, LR ; return

Lecture 18 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

Stack during Nonleaf Function

At beginning of f1 Just before calling f2 After calling f2

Lecture 18 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int factorial(int n) {
if (n <= 1)
return 1;

else
return (n * factorial(n-1));

}

Recursive Function Call

Lecture 18 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
0x94 FACTORIAL STR R0, [SP, #-4]! ;store R0 on stack
0x98 STR LR, [SP, #-4]! ;store LR on stack
0x9C CMP R0, #2 ;set flags with R0-2
0xA0 BHS ELSE ;if (r0>=2) branch to else
0xA4 MOV R0, #1 ; otherwise return 1
0xA8 ADD SP, SP, #8 ; restore SP 1
0xAC MOV PC, LR ; return
0xB0 ELSE SUB R0, R0, #1 ; n = n - 1
0xB4 BL FACTORIAL ; recursive call
0xB8 LDR LR, [SP], #4 ; restore LR
0xBC LDR R1, [SP], #4 ; restore R0 (n) into R1
0xC0 MUL R0, R1, R0 ; R0 = n*factorial(n-1)
0xC4 MOV PC, LR ; return

Recursive Function Call

Lecture 18 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Code
0x94 FACTORIAL STR R0, [SP, #-4]!
0x98 STR LR, [SP, #-4]!
0x9C CMP R0, #2
0xA0 BHS ELSE
0xA4 MOV R0, #1
0xA8 ADD SP, SP, #8
0xAC MOV PC, LR
0xB0 ELSE SUB R0, R0, #1
0xB4 BL FACTORIAL
0xB8 LDR LR, [SP], #4
0xBC LDR R1, [SP], #4
0xC0 MUL R0, R1, R0
0xC4 MOV PC, LR

Recursive Function Call

C Code
int factorial(int n) {

if (n <= 1)
return 1;

else
return (n * factorial(n-1));

}

Lecture 18 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

Before call During call After call

Stack during Recursive Call

Lecture 18 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

• Caller
– Puts arguments in R0-R3
– Saves any needed registers (LR, maybe R0-R3, R8-R12)
– Calls function: BL CALLEE
– Restores registers
– Looks for result in R0

• Callee
– Saves registers that might be disturbed (R4-R7)
– Performs function
– Puts result in R0
– Restores registers
– Returns: MOV PC, LR

Function Call Summary

Lecture 18 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Encode Instructions?

Lecture 18 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Encode Instructions?

• Design Principle 1: Regularity supports
design simplicity
– 32-bit data, 32-bit instructions

– For design simplicity, would prefer a single

instruction format but…

Lecture 18 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

How to Encode Instructions?

• Design Principle 1: Regularity supports
design simplicity
– 32-bit data, 32-bit instructions

– For design simplicity, would prefer a single

instruction format but…

– Instructions have different needs

Lecture 18 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

Good design demands good compromises
• Multiple instruction formats allow flexibility

- ADD, SUB: use 3 register operands

- LDR, STR: use 2 register operands and a constant

• Number of instruction formats kept small

- to adhere to design principles 1 and 3
(regularity supports design simplicity and
smaller is faster)

Design Principle 4

Lecture 18 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

• Binary representation of instructions
• Computers only understand 1’s and 0’s
• 32-bit instructions
– Simplicity favors regularity: 32-bit data & instructions

• 3 instruction formats:
– Data-processing

– Memory

– Branch

Machine Language

Lecture 18 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing
• Memory
• Branch

Instruction Formats

Lecture 18 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

• Operands:
– Rn: first source register

– Src2: second source – register or immediate

– Rd: destination register

• Control fields:
– cond: specifies conditional execution

– op: the operation code or opcode
– funct: the function/operation to perform

Data-processing Instruction Format

Lecture 18 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

• op = 002 for data-processing (DP) instructions
• funct is composed of cmd, I-bit, and S-bit

Data-processing Control Fields

Lecture 18 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

• op = 002 for data-processing (DP) instructions

• funct is composed of cmd, I-bit, and S-bit
§ cmd: specifies the specific data-processing instruction. For

example,
§ cmd = 01002 for ADD
§ cmd = 00102 for SUB

§ I-bit
§ I = 0: Src2 is a register
§ I = 1: Src2 is an immediate

§ S-bit: 1 if sets condition flags
§ S = 0: SUB R0, R5, R7
§ S = 1: ADDS R8, R2, R4 or CMP R3, #10

Data-processing Control Fields

Lecture 18 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

• Src2 can be:
§ Immediate
§ Register
§ Register-shifted register

Data-processing Src2 Variations

Lecture 18 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

• Src2 can be:
§ Immediate
§ Register
§ Register-shifted register

Data-processing Src2 Variations

Lecture 18 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate encoded as:
§ imm8: 8-bit unsigned immediate
§ rot: 4-bit rotation value

• 32-bit constant is: imm8 ROR (rot × 2)

Immediate Src2

Lecture 18 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate encoded as:
§ imm8: 8-bit unsigned immediate
§ rot: 4-bit rotation value

• 32-bit constant is: imm8 ROR (rot × 2)
• Example: imm8 = abcdefgh

Immediate Src2

rot 32-bit constant
0000 0000 0000 0000 0000 0000 0000 abcd efgh
0001 gh00 0000 0000 0000 0000 0000 00ab cdef
… …
1111 0000 0000 0000 0000 0000 00ab cdef gh00

Lecture 18 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate encoded as:
§ imm8: 8-bit unsigned immediate
§ rot: 4-bit rotation value

• 32-bit constant is: imm8 ROR (rot × 2)
• Example: imm8 = abcdefgh

Immediate Src2

rot 32-bit constant
0000 0000 0000 0000 0000 0000 0000 abcd efgh
0001 gh00 0000 0000 0000 0000 0000 00ab cdef
… …
1111 0000 0000 0000 0000 0000 00ab cdef gh00

ROR by X = ROL by (32-X)
Ex: ROR by 30 = ROL by 2

Lecture 18 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R0, R1, #42
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is an immediate so I = 1
• Rd = 0, Rn = 1
• imm8 = 42, rot = 0

DP Instruction with Immediate Src2

Lecture 18 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R0, R1, #42
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is an immediate so I = 1
• Rd = 0, Rn = 1
• imm8 = 42, rot = 0

DP Instruction with Immediate Src2

0xE281002A

Lecture 18 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

SUB R2, R3, #0xFF0
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 00102 (2) for SUB
• Src2 is an immediate so I=1
• Rd = 2, Rn = 3
• imm8 = 0xFF
• imm8 must be rotated right by 28 to produce 0xFF0, so rot = 14

DP Instruction with Immediate Src2

0xE2432EFF

ROR by 28 =
ROL by (32-28) = 4

Lecture 18 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2
• Src2 can be:

§ Immediate
§ Register
§ Register-shifted register

Lecture 18 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2
• Rm: the second source operand
• shamt5: the amount Rm is shifted
• sh: the type of shift (i.e., >>, <<, >>>, ROR)

Lecture 18 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2
• Rm: the second source operand
• shamt5: the amount Rm is shifted
• sh: the type of shift (i.e., >>, <<, >>>, ROR)

First, consider unshifted versions of Rm (shamt5=0, sh=0)

Lecture 18 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

ADD R5, R6, R7
• cond = 11102 (14) for unconditional execution

• op = 002 (0) for data-processing instructions
• cmd = 01002 (4) for ADD
• Src2 is a register so I=0

• Rd = 5, Rn = 6, Rm = 7

• shamt = 0, sh = 0

DP Instruction with Register Src2

0xE0865007

Lecture 18 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2
• Rm: the second source operand
• shamt5: the amount Rm is shifted
• sh: the type of shift

Shift Type sh
LSL 002

LSR 012

ASR 102

ROR 112Now, consider shifted versions.

Lecture 18 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

DP Instruction with Register Src2
ORR R9, R5, R3, LSR #2

• Operation: R9 = R5 OR (R3 >> 2)

• cond = 11102 (14) for unconditional execution

• op = 002 (0) for data-processing instructions

• cmd = 11002 (12) for ORR
• Src2 is a register so I=0

• Rd = 9, Rn = 5, Rm = 3

• shamt5 = 2, sh = 012 (LSR)

1110 00 0 1100 0 0101 1001 00010 01 0 0011

0xE1859123

Lecture 18 <55> Digital Design and Computer Architecture: ARM® Edition © 2015

DP with Register-shifted Reg. Src2
• Src2 can be:

§ Immediate
§ Register
§ Register-shifted register

Lecture 18 <56> Digital Design and Computer Architecture: ARM® Edition © 2015

DP with Register-shifted Reg. Src2
EOR R8, R9, R10, ROR R12

• Operation: R8 = R9 XOR (R10 ROR R12)

• cond = 11102 (14) for unconditional execution

• op = 002 (0) for data-processing instructions

• cmd = 00012 (1) for EOR
• Src2 is a register so I=0

• Rd = 8, Rn = 9, Rm = 10, Rs = 12

• sh = 112 (ROR)

1110 00 0 0001 0 1001 1000 1100 0 11 1 1010

0xE0298C7A

Lecture 18 <57> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions Encoding

Shift Type sh
LSL 002

LSR 012

ASR 102

ROR 112

Lecture 18 <58> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Immediate shamt
ROR R1, R2, #23

• Operation: R1 = R2 ROR 23
• cond = 11102 (14) for unconditional execution
• op = 002 (0) for data-processing instructions
• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)
• Src2 is an immediate-shifted register so I=0
• Rd = 1, Rn = 0, Rm = 2
• shamt5 = 23, sh = 112 (ROR)

1110 00 0 1101 0 0000 0001 10111 11 0 0010
0xE1A01BE2

Lecture 18 <59> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Immediate shamt

ROR R1, R2, #23
• Operation: R1 = R2 ROR 23

• cond = 11102 (14) for unconditional execution

• op = 002 (0) for data-processing instructions

• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)

• Src2 is an immediate-shifted register so I=0

• Rd = 1, Rn = 0, Rm = 2

• shamt5 = 23, sh = 112 (ROR) Uses (immediate-
shifted) register
Src2 encoding

1110 00 0 1101 0 0000 0001 10111 11 0 0010

0xE1A01BE2

Lecture 18 <60> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Register shamt

ASR R5, R6, R10
• Operation: R5 = R6 >>> R107:0

• cond = 11102 (14) for unconditional execution

• op = 002 (0) for data-processing instructions

• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)

• Src2 is a register so I=0

• Rd = 5, Rn = 0, Rm = 6, Rs = 10

• sh = 102 (ASR)

1110 00 0 1101 0 0000 0101 1010 0 10 1 0110

0xE1A05A56

Lecture 18 <61> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Register shamt

ASR R5, R6, R10
• Operation: R5 = R6 >>> R107:0

• cond = 11102 (14) for unconditional execution

• op = 002 (0) for data-processing instructions

• cmd = 11012 (13) for all shifts (LSL, LSR, ASR, and ROR)

• Src2 is a register so I=0

• Rd = 5, Rn = 0, Rm = 6, Rs = 10

• sh = 102 (ASR)

1110 00 0 1101 0 0000 0101 1010 0 10 1 0110

0xE1A05A56

Uses register-
shifted register
Src2 encoding

Lecture 18 <62> Digital Design and Computer Architecture: ARM® Edition © 2015

• Src2 can be:
§ Immediate
§ Register
§ Register-shifted register

Review: Data-processing Format

Lecture 18 <63> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing
• Memory
• Branch

Instruction Formats

Lecture 18 <64> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012
• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset
• funct = 6 control bits

Memory Instruction Format

Lecture 18 <65> Digital Design and Computer Architecture: ARM® Edition © 2015

Recall: Address = Base Address + Offset
Example: LDR R1, [R2, #4]

Base Address = R2, Offset = 4
Address = (R2 + 4)

• Base address always in a register
• The offset can be:

§ an immediate
§ a register
§ or a scaled (shifted) register

Offset Options

Lecture 18 <66> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly Memory Address
LDR R0, [R3, #4] R3 + 4
LDR R0, [R5, #-16] R5 – 16
LDR R1, [R6, R7] R6 + R7
LDR R2, [R8, -R9] R8 – R9
LDR R3, [R10, R11, LSL #2] R10 + (R11 << 2)
LDR R4, [R1, -R12, ASR #4] R1 – (R12 >>> 4)
LDR R0, [R9] R9

Offset Examples

Lecture 18 <67> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012
• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset: register (optionally shifted) or immediate
• funct = 6 control bits

Memory Instruction Format

Lecture 18 <68> Digital Design and Computer Architecture: ARM® Edition © 2015

Mode Address Base Reg. Update
Offset Base register ± Offset No change
Preindex Base register ± Offset Base register ± Offset
Postindex Base register Base register ± Offset

Examples
• Offset: LDR R1, [R2, #4] ; R1 = mem[R2+4]
• Preindex: LDR R3, [R5, #16]! ; R3 = mem[R5+16]

; R5 = R5 + 16
• Postindex: LDR R8, [R1], #8 ; R8 = mem[R1]

; R1 = R1 + 8

Indexing Modes

Lecture 18 <69> Digital Design and Computer Architecture: ARM® Edition © 2015

• funct:
§ I: Immediate bar
§ P: Preindex
§ U: Add
§ B: Byte
§ W: Writeback
§ L: Load

Memory Instruction Format

Lecture 18 <70> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Format funct Encodings
Type of Operation
L B Instruction
0 0 STR
0 1 STRB
1 0 LDR
1 1 LDRB

Lecture 18 <71> Digital Design and Computer Architecture: ARM® Edition © 2015

P W Indexing Mode
0 1 Not supported
0 0 Postindex
1 0 Offset
1 1 Preindex

Memory Format funct Encodings
Type of Operation Indexing Mode
L B Instruction
0 0 STR
0 1 STRB
1 0 LDR
1 1 LDRB

Lecture 18 <72> Digital Design and Computer Architecture: ARM® Edition © 2015

P W Indexing Mode
0 1 Not supported
0 0 Postindex
1 0 Offset
1 1 Preindex

Memory Format funct Encodings
Type of Operation

Value I U
0 Immediate offset in Src2 Subtract offset from base
1 Register offset in Src2 Add offset to base

Add/Subtract Immediate/Register Offset

Indexing Mode
L B Instruction
0 0 STR
0 1 STRB
1 0 LDR
1 1 LDRB

Lecture 18 <73> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012
• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset: immediate or register (optionally shifted)
• funct = I (immediate bar), P (preindex), U (add),

B (byte), W (writeback), L (load)

Memory Instruction Format

Lecture 18 <74> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Immediate Src2
STR R11, [R5], #-26

• Operation: mem[R5] <= R11; R5 = R5 - 26
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 00000002 (0)

I = 0 (immediate offset), P = 0 (postindex),
U = 0 (subtract), B = 0 (store word), W = 0 (postindex),
L = 0 (store)

• Rd = 11, Rn = 5, imm12 = 26

Lecture 18 <75> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Register Src2
LDR R3, [R4, R5]

• Operation: R3 <= mem[R4 + R5]
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 1110012 (57)

I = 1 (register offset), P = 1 (offset indexing),
U = 1 (add), B = 0 (load word), W = 0 (offset indexing),
L = 1 (load)

• Rd = 3, Rn = 4, Rm = 5 (shamt5 = 0, sh = 0)
1110 01 111001 0100 0011 00000 00 0 0101 = 0xE7943005

Lecture 18 <76> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Instr. with Scaled Reg. Src2
STR R9, [R1, R3, LSL #2]

• Operation: mem[R1 + (R3 << 2)] <= R9
• cond = 11102 (14) for unconditional execution
• op = 012 (1) for memory instruction
• funct = 1110002 (0)

I = 1 (register offset), P = 1 (offset indexing),
U = 1 (add), B = 0 (store word), W = 0 (offset indexing),
L = 0 (store)

• Rd = 9, Rn = 1, Rm = 3, shamt = 2, sh = 002 (LSL)

1110 01 111000 0001 1001 00010 00 0 0011 = 0xE7819103

Lecture 18 <77> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes: LDR, STR, LDRB, STRB
• op = 012
• Rn = base register
• Rd = destination (load), source (store)
• Src2 = offset: register (optionally shifted) or immediate
• funct = I (immediate bar), P (preindex), U (add),

B (byte), W (writeback), L (load)

Review: Memory Instruction Format

Lecture 18 <78> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing
• Memory
• Branch

Instruction Formats

Lecture 18 <79> Digital Design and Computer Architecture: ARM® Edition © 2015

Encodes B and BL
• op = 102

• imm24: 24-bit immediate

• funct = 1L2: L = 1 for BL, L = 0 for B

Branch Instruction Format

Lecture 18 <80> Digital Design and Computer Architecture: ARM® Edition © 2015

• Branch Target Address (BTA): Next PC when
branch taken

• BTA is relative to current PC + 8
• imm24 encodes BTA
• imm24 = # of words BTA is away from PC+8

Encoding Branch Target Address

Lecture 18 <81> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code
0xA0 BLT THERE
0xA4 ADD R0, R1, R2
0xA8 SUB R0, R0, R9
0xAC ADD SP, SP, #8
0xB0 MOV PC, LR
0xB4 THERE SUB R0, R0, #1
0xB8 BL TEST

• PC = 0xA0
• PC + 8 = 0xA8
• THERE label is 3

instructions past
PC+8

• So, imm24 = 3

PC

PC+8

BTA

Branch Instruction: Example 1

0xBA000003

Lecture 18 <82> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly code
0x8040 TEST LDRB R5, [R0, R3]
0x8044 STRB R5, [R1, R3]
0x8048 ADD R3, R3, #1
0x8044 MOV PC, LR
0x8050 BL TEST
0x8054 LDR R3, [R1], #4
0x8058 SUB R4, R3, #9

• PC = 0x8050
• PC + 8 = 0x8058
• TEST label is 6

instructions before
PC+8

• So, imm24 = -6

Branch Instruction: Example 2

PC

PC+8

BTA

0xEBFFFFFA

Lecture 18 <83> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: Instruction Formats

Branch

Lecture 18 <84> Digital Design and Computer Architecture: ARM® Edition © 2015

Encode in cond bits of machine instruction
For example,
ANDEQ R1, R2, R3 (cond = 0000)
ORRMI R4, R5, #0xF (cond = 0100)
SUBLT R9, R3, R8 (cond = 1011)

Conditional Execution

Lecture 18 <85> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: Condition Mnemonics

Other data-processing instructions will set the condition flags when the
instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ

1101 LE Signed less than or equal Z OR ðN⊕VÞ

1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307

Lecture 18 <86> Digital Design and Computer Architecture: ARM® Edition © 2015

cond op cmd rn rd

Field Values
31:28 27:26 24:21 19:16 15:12

0

I

25

S

20

14 0 2 1 2 1

shshamt5

0

rm

411:7 6:5 3:0

0 0 3
00 0 4 0 5 4 00 0 6

cond op cmd rn rd

Machine Code
31:28 27:26 24:21 19:16 15:12

00

I

25

S

20

1110 0 0010 0 0010 0001

shshamt5

0

rm

411:7 6:5 3:0

00000 00 0011
0000 0 0100 0 0101 0100 0 0110

Assembly Code

00000 0000
(0xE0421003)

(0x00854006)

04 0 12 0 5 8 00 0 6
011 0 1 0 5 9 00 0 6

000100 0 1100 0 0101 1000 000000 00 0110
1011 0 0001 0 0101 1001 0 011000000 0000

(0x41858006)

(0xB0259006)

02 0 0 0 5 7 00 0 6

000010 0 0000 0 0101 0111 000000 00 0110 (0x20057006)

SUBS R1, R2, R3

ADDEQ R4, R5, R6

ORRMI R8, R5, R6

EORLT R9, R5, R6

ANDHS R7, R5, R6

Conditional Execution: Machine Code

Lecture 18 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

• Start with op: tells how to parse rest

op = 00 (Data-processing)

op = 01 (Memory)

op = 10 (Branch)

• I-bit: tells how to parse Src2
• Data-processing instructions:

If I-bit is 0, bit 4 determines if Src2 is a register (bit 4

= 0) or a register-shifted register (bit 4 = 1)

• Memory instructions:
Examine funct bits for indexing mode, instruction,

and add or subtract offset

Interpreting Machine Code

Lecture 18 <88> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001

Interpreting Machine Code: Example 1

Lecture 18 <89> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001
• Start with op: 002, so data-processing instruction

Interpreting Machine Code: Example 1

Lecture 18 <90> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001
• Start with op: 002, so data-processing instruction
• I-bit: 0, so Src2 is a register
• bit 4: 0, so Src2 is a register (optionally shifted by shamt5)

Interpreting Machine Code: Example 1

Lecture 18 <91> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE0475001
• Start with op: 002, so data-processing instruction

• I-bit: 0, so Src2 is a register

• bit 4: 0, so Src2 is a register (optionally shifted by shamt5)

• cmd: 00102 (2), so SUB

• Rn=7, Rd=5, Rm=1, shamt5 = 0, sh = 0

• So, instruction is: SUB R5,R7,R1

Interpreting Machine Code: Example 1

Lecture 18 <92> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE5949010

Interpreting Machine Code: Example 2

Lecture 18 <93> Digital Design and Computer Architecture: ARM® Edition © 2015

0xE5949010
• Start with op: 012, so memory instruction
• funct: B=0, L=1, so LDR; P=1, W=0, so offset indexing;

I=0, so immediate offset, U=1, so add offset

• Rn=4, Rd=9, imm12 = 16
• So, instruction is: LDR R9,[R4,#16]

Interpreting Machine Code: Example 2

Lecture 18 <94> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register

• Immediate

• Base

• PC-Relative

Addressing Modes

Lecture 18 <95> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only
• Immediate

• Base

• PC-Relative

Addressing Modes

Lecture 18 <96> Digital Design and Computer Architecture: ARM® Edition © 2015

• Source and destination operands found in
registers

• Used by data-processing instructions
• Three submodes:
–Register-only
– Immediate-shifted register
–Register-shifted register

Register Addressing

Lecture 18 <97> Digital Design and Computer Architecture: ARM® Edition © 2015

• Register-only
Example: ADD R0, R2, R7

• Immediate-shifted register
Example: ORR R5, R1, R3, LSL #1

• Register-shifted register
Example: SUB R12, R9, R0, ASR R1

Register Addressing Examples

Lecture 18 <98> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only

• Immediate
• Base

• PC-Relative

Addressing Modes

Lecture 18 <99> Digital Design and Computer Architecture: ARM® Edition © 2015

• Operands found in registers and immediates
Example: ADD R9, R1, #14

• Uses data-processing format with I=1
– Immediate is encoded as

• 8-bit immediate (imm8)

• 4-bit rotation (rot)

– 32-bit immediate = imm8 ROR (rot x 2)

Immediate Addressing

Lecture 18 <100> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only

• Immediate

• Base
• PC-Relative

Addressing Modes

Lecture 18 <101> Digital Design and Computer Architecture: ARM® Edition © 2015

• Address of operand is:
base register + offset

• Offset can be a:
–12-bit Immediate
–Register
– Immediate-shifted Register

Base Addressing

Lecture 18 <102> Digital Design and Computer Architecture: ARM® Edition © 2015

• Immediate offset
Example: LDR R0, [R8, #-11]
(R0 = mem[R8 - 11])

• Register offset
Example: LDR R1, [R7, R9]
(R1 = mem[R7 + R9])

• Immediate-shifted register offset
Example: STR R5, [R3, R2, LSL #4]
(R5 = mem[R3 + (R2 << 4)])

Base Addressing Examples

Lecture 18 <103> Digital Design and Computer Architecture: ARM® Edition © 2015

How do we address operands?
• Register Only
• Immediate
• Base
• PC-Relative

Addressing Modes

Lecture 18 <104> Digital Design and Computer Architecture: ARM® Edition © 2015

• Used for branches

• Branch instruction format:
– Operands are PC and a signed 24-bit immediate (imm24)

– Changes the PC

– New PC is relative to the old PC

– imm24 indicates the number of words away from PC+8

• PC = (PC+8) + (SignExtended(imm24) x 4)

PC-Relative Addressing

Lecture 18 <105> Digital Design and Computer Architecture: ARM® Edition © 2015

• 32-bit instructions & data stored in memory

• Sequence of instructions: only difference
between two applications

• To run a new program:
– No rewiring required

– Simply store new program in memory

• Program Execution:
– Processor fetches (reads) instructions from memory

in sequence

– Processor performs the specified operation

Power of the Stored Program

Lecture 18 <106> Digital Design and Computer Architecture: ARM® Edition © 2015

Program Counter
(PC): keeps track of
current instruction

ADD R3, R1, R2

Machine CodeAssembly Code

MOV R1, #100

MOV R2, #69

STR R3, [R1]

0xE3A01064

0xE3A02045

0xE2813002

0xE5913000

Address Instructions

0000000C E 5 9 1 3 0 0 0
E 2 8 1 3 0 0 2
E 3 A 0 2 0 4 5
E 3 A 0 1 0 6 4

00000008
00000004
00000000

Stored Program

Main Memory

PC

The Stored Program

Lecture 18 <107> Digital Design and Computer Architecture: ARM® Edition © 2015

How to implement the ARM Instruction Set
Architecture in Hardware

Microarchitecture

Up Next

