
Lecture 17: 
ARM Assembly 
Language

E85 Digital Design & Computer Engineering



Lecture 17 <2> Digital Design and Computer Architecture: ARM® Edition © 2015

• Introduction
• Assembly Language
• Machine Language
• Programming
• Addressing Modes

Lecture 17



Lecture 17 <3> Digital Design and Computer Architecture: ARM® Edition © 2015

• Jumping up a few levels of 
abstraction
– Architecture: programmer’s 

view of computer
• Defined by instructions & 

operand locations
– Microarchitecture: how to 

implement an architecture in 
hardware (covered in Chapter 7)

Introduction



Lecture 17 <4> Digital Design and Computer Architecture: ARM® Edition © 2015

• Commands in a computer’s language
–Assembly language: human-readable 

format of instructions
–Machine language: computer-readable 

format (1’s and 0’s)

Instructions



Lecture 17 <5> Digital Design and Computer Architecture: ARM® Edition © 2015

• Developed in the 1980’s by Advanced RISC 
Machines – now called ARM Holdings

• Nearly 10 billion ARM processors sold/year
• Almost all cell phones and tablets have multiple 

ARM processors
• Over 75% of humans use products with an ARM 

processor
• Used in servers, cameras, robots, cars, pinball 

machines, etc.

ARM Architecture



Lecture 17 <6> Digital Design and Computer Architecture: ARM® Edition © 2015

• Developed in the 1980’s by Advanced RISC 
Machines – now called ARM Holdings

• Nearly 10 billion ARM processors sold/year
• Almost all cell phones and tablets have multiple 

ARM processors
• Over 75% of humans use products with an ARM 

processor
• Used in servers, cameras, robots, cars, pinball 

machines,, etc.

ARM Architecture

Once you’ve learned one architecture, it’s easier to learn others



Lecture 17 <7> Digital Design and Computer Architecture: ARM® Edition © 2015

Underlying design principles, as articulated by 
Hennessy and Patterson:

1.Regularity supports design simplicity
2.Make the common case fast
3.Smaller is faster
4.Good design demands good compromises

Architecture Design Principles



Lecture 17 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

• ADD: mnemonic – indicates operation to 
perform

• b, c:   source operands
• a: destination operand

C Code
a = b + c;

ARM Assembly Code
ADD a, b, c

Instruction: Addition



Lecture 17 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

Similar to addition - only mnemonic changes

• SUB: mnemonic
• b, c:  source operands
• a: destination operand

C Code
a = b - c;

ARM assembly code
SUB a, b, c

Instruction: Subtraction



Lecture 17 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

Regularity supports design simplicity
• Consistent instruction format
• Same number of operands (two sources and 

one destination)
• Ease of encoding and handling in hardware

Design Principle 1



Lecture 17 <11> Digital Design and Computer Architecture: ARM® Edition © 2015

More complex code handled by multiple ARM 
instructions

C Code
a = b + c - d;

ARM assembly code
ADD t, b, c  ; t = b + c
SUB a, t, d  ; a = t - d

Multiple Instructions



Lecture 17 <12> Digital Design and Computer Architecture: ARM® Edition © 2015

Make the common case fast
• ARM includes only simple, commonly used instructions
• Hardware to decode and execute instructions kept 

simple, small, and fast
• More complex instructions (that are less common) 

performed using multiple simple instructions

Design Principle 2



Lecture 17 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

Make the common case fast
• ARM is a Reduced Instruction Set Computer (RISC), 

with a small number of simple instructions
• Other architectures, such as Intel’s x86, are 

Complex Instruction Set Computers (CISC)

Design Principle 2



Lecture 17 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

Physical location in computer
– Registers
– Constants (also called immediates)
– Memory

Operand Location



Lecture 17 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

• ARM has 16 registers 
• Registers are faster than memory
• Each register is 32 bits
• ARM is called a “32-bit architecture” 

because it operates on 32-bit data

Operands: Registers



Lecture 17 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

Smaller is Faster
• ARM includes only a small number of 

registers

Design Principle 3



Lecture 17 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

Name Use
R0 Argument / return value / temporary variable
R1-R3 Argument / temporary variables
R4-R11 Saved variables
R12 Temporary variable
R13 (SP) Stack Pointer
R14 (LR) Link Register
R15 (PC) Program Counter

ARM Register Set



Lecture 17 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• Registers:
– R before number, all capitals 

– Example: “R0” or “register zero” or “register R0”

Operands: Registers



Lecture 17 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

• Registers used for specific purposes: 
– Saved registers: R4-R11 hold variables
– Temporary registers: R0-R3 and R12, hold 

intermediate values
– Discuss others later

Operands: Registers



Lecture 17 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

Revisit  ADD instruction

C Code

a = b + c;

ARM Assembly Code
; R0 = a, R1 = b, R2 = c

ADD R0, R1, R2

Instructions with Registers



Lecture 17 <21> Digital Design and Computer Architecture: ARM® Edition © 2015

• Many instructions can use constants or 
immediate operands

• For example: ADD and SUB
• value is immediately available from 

instruction

C Code

a = a + 4;
b = a – 12;

ARM Assembly Code
; R0 = a, R1 = b
ADD R0, R0, #4
SUB R1, R0, #12

Operands: Constants\Immediates



Lecture 17 <22> Digital Design and Computer Architecture: ARM® Edition © 2015

Generating small constants using move (MOV):

C Code
//int: 32-bit signed word
int a = 23;
int b = 0x45;

ARM Assembly Code
; R0 = a, R1 = b
MOV R0, #23
MOV R1, #0x45

Generating Constants



Lecture 17 <23> Digital Design and Computer Architecture: ARM® Edition © 2015

Generating small constants using move (MOV):

Constant must have < 8 bits of precision
Note: MOV can also use 2 registers: MOV R7, R9

C Code
//int: 32-bit signed word
int a = 23;
int b = 0x45;

ARM Assembly Code
; R0 = a, R1 = b
MOV R0, #23
MOV R1, #0x45

Generating Constants



Lecture 17 <24> Digital Design and Computer Architecture: ARM® Edition © 2015

Generate larger constants using move (MOV) and 
or (ORR):

C Code

int a = 0x7EDC8765;

ARM Assembly Code
# R0 = a
MOV R0, #0x7E000000
ORR R0, R0, #0xDC0000
ORR R0, R0, #0x8700
ORR R0, R0, #0x65

Generating Constants



Lecture 17 <25> Digital Design and Computer Architecture: ARM® Edition © 2015

• Too much data to fit in only 16 registers
• Store more data in memory
• Memory is large, but slow
• Commonly used variables still kept in registers

Operands: Memory



Lecture 17 <26> Digital Design and Computer Architecture: ARM® Edition © 2015

• Each data byte has unique address
• 32-bit word = 4 bytes, so word address 

increments by 4

Byte-Addressable Memory



Lecture 17 <27> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory read called load
• Mnemonic: load register (LDR)

• Format:
LDR R0, [R1, #12] 
Address calculation:
– add base address (R1) to the offset (12)
– address = (R1 + 12)

Result:
– R0 holds the data at memory address (R1 + 12)

Any register may be used as base address

Reading Memory



Lecture 17 <28> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Read a word of data at memory 
address 8 into R3
– Address = (R2 + 8) = 8
– R3 = 0x01EE2842 after load

ARM Assembly Code
MOV R2, #0
LDR R3, [R2, #8]

Reading Memory



Lecture 17 <29> Digital Design and Computer Architecture: ARM® Edition © 2015

• Memory write are called stores
• Mnemonic: store register (STR)

Writing Memory



Lecture 17 <30> Digital Design and Computer Architecture: ARM® Edition © 2015

• Example: Store the value held in R7 into 
memory word 21. 

• Memory address = 4 x 21 = 84 = 0x54

ARM assembly code
MOV R5, #0
STR R7, [R5, #0x54]

Writing Memory

The offset can be written in 
decimal or hexadecimal



Lecture 17 <31> Digital Design and Computer Architecture: ARM® Edition © 2015

• Address of a memory word must be 
multiplied by 4  

• Examples:
– Address of memory word 2 = 2 × 4 = 8

– Address of memory word 10 = 10 × 4 = 40

Recap: Accessing Memory



Lecture 17 <32> Digital Design and Computer Architecture: ARM® Edition © 2015

• How to number bytes within a word?
– Little-endian: byte numbers start at the little

(least significant) end
– Big-endian: byte numbers start at the big (most 

significant) end

Big-Endian & Little-Endian Memory



Lecture 17 <33> Digital Design and Computer Architecture: ARM® Edition © 2015

• Jonathan Swift’s Gulliver’s Travels: the Little-Endians
broke their eggs on the little end of the egg and the 
Big-Endians broke their eggs on the big end

• It doesn’t really matter which addressing type used 
– except when two systems share data

Big-Endian & Little-Endian Memory



Lecture 17 <34> Digital Design and Computer Architecture: ARM® Edition © 2015

Suppose R2 and R5 hold the values 8 and 
0x23456789
• After following code runs on big-endian system, what 

value is in R7?

• In a little-endian system?
STR  R5, [R2, #0]
LDRB R7, [R2, #1]

Big-Endian & Little-Endian Example



Lecture 17 <35> Digital Design and Computer Architecture: ARM® Edition © 2015

Suppose R2 and R5 hold the values 8 and 
0x23456789
• After following code runs on big-endian system, what 

value is in R7?

• In a little-endian system?
STR  R5, [R2, #0]
LDRB R7, [R2, #1]

23 45 67 89
8 9 A B

23 45 67 890
B A 9 8

Word
Address

Big-Endian Little-Endian

Byte Address
Data Value

Byte Address
Data Value

MSB LSB MSB LSB

Big-Endian & Little-Endian Example

Big-endian:     
0x00000045

Little-endian:  
0x00000067



Lecture 17 <36> Digital Design and Computer Architecture: ARM® Edition © 2015

High-level languages:
– e.g., C, Java, Python
– Written at higher level of abstraction

Programming



Lecture 17 <37> Digital Design and Computer Architecture: ARM® Edition © 2015

• British mathematician

• Wrote the first computer 

program

• Her program calculated 

the Bernoulli numbers on 

Charles Babbage’s 

Analytical Engine

• She was a child of the 

poet Lord Byron

Ada Lovelace, 1815-1852



Lecture 17 <38> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions
• Conditional Execution
• Branches
• High-level Constructs:

§ if/else statements
§ for loops
§ while loops
§ arrays
§ function calls

Programming Building Blocks



Lecture 17 <39> Digital Design and Computer Architecture: ARM® Edition © 2015

• Logical operations
• Shifts / rotate
• Multiplication

Data-processing Instructions



Lecture 17 <40> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND
• ORR
• EOR (XOR)
• BIC (Bit Clear = A & ~B)
• MVN (MoVe and NOT)

Logical Instructions



Lecture 17 <41> Digital Design and Computer Architecture: ARM® Edition © 2015

Logical Instructions: Examples



Lecture 17 <42> Digital Design and Computer Architecture: ARM® Edition © 2015

• AND or BIC: useful for masking bits
Example: Masking  all but the least significant byte 
of a value

0xF234012F  AND 0x000000FF  = 0x0000002F
0xF234012F  BIC 0xFFFFFF00   = 0x0000002F

• ORR: useful for combining bit fields
Example: Combine 0xF2340000 with 0x000012BC: 

0xF2340000 ORR 0x000012BC = 0xF23412BC

Logical Instructions: Uses



Lecture 17 <43> Digital Design and Computer Architecture: ARM® Edition © 2015

• LSL: logical shift left
Example: LSL R0, R7, #5  ; R0=R7 << 5

• LSR: logical shift right
Example: LSR R3, R2, #31 ; R3=R2 >> 31

• ASR: arithmetic shift right
Example: ASR R9, R11, R4 ; R9=R11 >>> R47:0

• ROR: rotate right
Example: ROR R8, R1, #3  ; R8=R1 ROR 3

Shift Instructions



Lecture 17 <44> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Example 1
• Immediate shift amount (5-bit immediate)
• Shift amount: 0-31



Lecture 17 <45> Digital Design and Computer Architecture: ARM® Edition © 2015

Shift Instructions: Example 2
• Register shift amount (uses low 8 bits of register)
• Shift amount: 0-255



Lecture 17 <46> Digital Design and Computer Architecture: ARM® Edition © 2015

• MUL: 32 × 32 multiplication, 32-bit result
MUL R1, R2, R3
Result: R1 = (R2 x R3)31:0 (signed doesn’t matter)

• UMULL: Unsigned multiply long: 32 × 32 
multiplication, 64-bit result

UMULL R1, R2, R3, R4
Result: {R1,R4} = R2 x R3 (R2, R3 unsigned)

• SMULL: Signed multiply long: 32 × 32 
multiplication, 64-bit result

SMULL R1, R2, R3, R4
Result: {R1,R4} = R2 x R3 (R2, R3 signed)

Multiplication



Lecture 17 <47> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions
• Conditional Execution
• Branches
• High-level Constructs:

§ if/else statements
§ for loops
§ while loops
§ arrays
§ function calls

Programming Building Blocks



Lecture 17 <48> Digital Design and Computer Architecture: ARM® Edition © 2015

Don’t always want to execute code sequentially
• For example: 

§ if/else statements, while loops, etc.: only 
want to execute code if a condition is true

§ branching: jump to another portion of code 
if a condition is true

Conditional Execution



Lecture 17 <49> Digital Design and Computer Architecture: ARM® Edition © 2015

Don’t always want to execute code sequentially
• For example: 

§ if/else statements, while loops, etc.: only 
want to execute code if a condition is true

§ branching: jump to another portion of code if
a condition is true

• ARM includes condition flags that can be:
§ set by an instruction
§ used to conditionally execute an instruction

Conditional Execution



Lecture 17 <50> Digital Design and Computer Architecture: ARM® Edition © 2015

• Set by ALU (recall from Chapter 5)
• Held in Current Program Status Register (CPSR)

ARM Condition Flags

Flag Name Description
N Negative Instruction result is negative

Z Zero Instruction results in zero

C Carry Instruction causes an unsigned carry out

V oVerflow Instruction causes an overflow



Lecture 17 <51> Digital Design and Computer Architecture: ARM® Edition © 2015

Review: ARM ALU



Lecture 17 <52> Digital Design and Computer Architecture: ARM® Edition © 2015

• Method 1: Compare instruction: CMP
Example: CMP R5, R6
§ Performs: R5-R6

§ Does not save result

§ Sets flags. If result:

• Is 0, Z=1

• Is negative, N=1

• Causes a carry out, C=1

• Causes a signed overflow, V=1

Setting the Condition Flags: NZCV



Lecture 17 <53> Digital Design and Computer Architecture: ARM® Edition © 2015

• Method 1: Compare instruction: CMP
Example: CMP R5, R6
§ Performs: R5-R6

§ Sets flags: If result is 0 (Z=1), negative (N=1), etc.

§ Does not save result

• Method 2: Append instruction mnemonic with S
Example: ADDS R1, R2, R3
§ Performs: R2 + R3

§ Sets flags: If result is 0 (Z=1), negative (N=1), etc.

§ Saves result in R1

Setting the Condition Flags: NZCV



Lecture 17 <54> Digital Design and Computer Architecture: ARM® Edition © 2015

• Instruction may be conditionally executed
based on the condition flags

• Condition of execution is encoded as a 

condition mnemonic appended to the 

instruction mnemonic

Example: CMP   R1, R2
SUBNE R3, R5, R8

§ NE: not equal condition mnemonic

§ SUB will only execute if R1 ≠ R2 

(i.e., Z = 0)

Condition Mnemonics



Lecture 17 <55> Digital Design and Computer Architecture: ARM® Edition © 2015

Condition Mnemonics

Other data-processing instructions will set the condition flags when the
instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ

1101 LE Signed less than or equal Z OR ðN⊕VÞ

1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307



Lecture 17 <56> Digital Design and Computer Architecture: ARM® Edition © 2015

Example:
CMP   R5, R9 ; performs R5-R9

; sets condition flags

SUBEQ R1, R2, R3 ; executes if R5==R9 (Z=1)
ORRMI R4, R0, R9 ; executes if R5-R9 is 

; negative (N=1)

Suppose R5 = 17, R9 = 23:
CMP performs: 17 – 23 = -6  (Sets flags: N=1, Z=0, C=0, V=0)

SUBEQ doesn’t execute (they aren’t equal: Z=0)

ORRMI executes because the result was negative (N=1)

Conditional Execution



Lecture 17 <57> Digital Design and Computer Architecture: ARM® Edition © 2015

• Data-processing Instructions
• Conditional Execution
• Branches
• High-level Constructs:

§ if/else statements
§ for loops
§ while loops
§ arrays
§ function calls

Programming Building Blocks



Lecture 17 <58> Digital Design and Computer Architecture: ARM® Edition © 2015

• Branches enable out of sequence instruction 
execution

• Types of branches:
– Branch (B)
• branches to another instruction

– Branch and link (BL)
• discussed later

• Both can be conditional or unconditional

Branching



Lecture 17 <59> Digital Design and Computer Architecture: ARM® Edition © 2015

The Stored Program



Lecture 17 <60> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM assembly
MOV R2, #17 ; R2 = 17
B   TARGET ; branch  to  target 
ORR R1, R1, #0x4 ; not executed 

TARGET
SUB R1, R1, #78  ; R1 = R1 + 78

Labels (like TARGET) indicate instruction location. 
Labels can’t be reserved words (like ADD, ORR, etc.)

Unconditional Branching (B)



Lecture 17 <61> Digital Design and Computer Architecture: ARM® Edition © 2015

ARM Assembly
MOV  R0, #4 ; R0 = 4
ADD R1, R0, R0     ; R1 = R0+R0 = 8
CMP R0, R1 ; sets flags with R0-R1
BEQ THERE ; branch not taken (Z=0)
ORR  R1, R1, #1     ; R1 = R1 OR R1 = 9

THERE
ADD R1, R1, 78      ; R1 = R1 + 78 = 87

The Branch Not Taken



Lecture 17 <62> Digital Design and Computer Architecture: ARM® Edition © 2015

Programming Building Blocks

• Data-processing Instructions
• Conditional Execution
• Branches
• High-level Constructs:

§ if/else statements
§ for loops
§ while loops
§ arrays
§ function calls



Lecture 17 <63> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

f = f – i;

if Statement



Lecture 17 <64> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4      ; set flags with R3-R4
BNE L1          ; if i!=j, skip if block
ADD R0, R1, R2  ; f = g + h

L1
SUB R0, R0, R2  ; f = f - i

if Statement



Lecture 17 <65> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4      ; set flags with R3-R4
BNE L1          ; if i!=j, skip if block
ADD R0, R1, R2  ; f = g + h

L1
SUB R0, R0, R2  ; f = f - i

if Statement

Assembly tests opposite case (i != j) of high-level code 
(i == j)



Lecture 17 <66> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP   R3, R4      ; set flags with R3-R4
ADDEQ R0, R1, R2  ; if (i==j) f = g + h
SUB   R0, R0, R2  ; f = f - i

if Statement: Alternate Code



Lecture 17 <67> Digital Design and Computer Architecture: ARM® Edition © 2015

Alternate Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP   R3, R4      ; set flags with R3-R4
ADDEQ R0, R1, R2  ; if (i==j) f = g + h
SUB   R0, R0, R2  ; f = f - i

if Statement: Alternate Code

Original

CMP R3, R4 
BNE L1
ADD R0, R1, R2
L1
SUB R0, R0, R2



Lecture 17 <68> Digital Design and Computer Architecture: ARM® Edition © 2015

Alternate Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP   R3, R4      ; set flags with R3-R4
ADDEQ R0, R1, R2  ; if (i==j) f = g + h
SUB   R0, R0, R2  ; f = f - i

if Statement: Alternate Code

Original

CMP R3, R4 
BNE L1
ADD R0, R1, R2
L1
SUB R0, R0, R2

Useful for short conditional blocks of code



Lecture 17 <69> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

else
f = f – i;

if/else Statement

ARM Assembly Code



Lecture 17 <70> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

else
f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP R3, R4      ; set flags with R3-R4
BNE L1          ; if i!=j, skip if block
ADD R0, R1, R2  ; f = g + h
B   L2          ; branch past else block
L1
SUB R0, R0, R2  ; f = f – i
L2

if/else Statement



Lecture 17 <71> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code

if (i == j)
f = g + h;

else
f = f – i;

ARM Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP   R3, R4      ; set flags with R3-R4
ADDEQ R0, R1, R2  ; if (i==j) f = g + h

SUBNE R0, R0, R2  ; else f = f - i

if/else Statement: Alternate Code



Lecture 17 <72> Digital Design and Computer Architecture: ARM® Edition © 2015

Alternate Assembly Code
;R0=f, R1=g, R2=h, R3=i, R4=j

CMP   R3, R4      ; set flags with R3-R4
ADDEQ R0, R1, R2  ; if (i==j) f = g + h

SUBNE R0, R0, R2  ; else f = f - i

if/else Statement: Alternate Code

Original

CMP R3, R4 
BNE L1
ADD R0, R1, R2
B   L2
L1
SUB R0, R0, R2
L2



Lecture 17 <73> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// determines the power
// of x such that 2x = 128
int pow = 1;
int x   = 0;

while (pow != 128) {

pow = pow * 2;
x = x + 1;

}

ARM Assembly Code

while Loops



Lecture 17 <74> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// determines the power
// of x such that 2x = 128
int pow = 1;
int x   = 0;

while (pow != 128) {

pow = pow * 2;
x = x + 1;

}

ARM Assembly Code
; R0 = pow, R1 = x

MOV R0, #1 ; pow = 1
MOV R1, #0 ; x = 0

WHILE
CMP R0, #128 ; R0-128
BEQ DONE ; if (pow==128) 

; exit loop
LSL R0, R0, #1 ; pow=pow*2
ADD R1, R1, #1 ; x=x+1
B   WHILE ; repeat loop

DONE

while Loops



Lecture 17 <75> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// determines the power
// of x such that 2x = 128
int pow = 1;
int x   = 0;

while (pow != 128) {

pow = pow * 2;
x = x + 1;

}

ARM Assembly Code
; R0 = pow, R1 = x

MOV R0, #1 ; pow = 1
MOV R1, #0 ; x = 0

WHILE
CMP R0, #128 ; R0-128
BEQ DONE ; if (pow==128) 

; exit loop
LSL R0, R0, #1 ; pow=pow*2
ADD R1, R1, #1 ; x=x+1
B   WHILE ; repeat loop

DONE

Assembly tests for the opposite case (pow == 128) of the C 
code (pow != 128).

while Loops



Lecture 17 <76> Digital Design and Computer Architecture: ARM® Edition © 2015

for (initialization; condition; loop operation)
statement

• initialization: executes before the loop begins
• condition: is tested at the beginning of each iteration
• loop operation: executes at the end of each iteration
• statement: executes each time the condition is met

for Loops



Lecture 17 <77> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9
int sum = 0;
int i;

for (i=1; i!=10; i=i+1)
sum = sum + i;

ARM Assembly Code

for Loops



Lecture 17 <78> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9
int sum = 0

for (i=1; i!=10; i=i+1)
sum = sum + i;

ARM Assembly Code
; R0 = i, R1 = sum

MOV R0, #1 ; i = 1
MOV R1, #0 ; sum = 0

FOR
CMP R0, #10 ; R0-10
BEQ DONE ; if (i==10) 

; exit loop
ADD R1, R1, R0 ; sum=sum + i
ADD R0, R0, #1 ; i = i + 1
B   FOR ; repeat loop

DONE

for Loops



Lecture 17 <79> Digital Design and Computer Architecture: ARM® Edition © 2015

In ARM, decremented loop variables are more efficient

for Loops: Decremented Loops



Lecture 17 <80> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9
int sum = 0

for (i=9; i!=0; i=i-1)
sum = sum + i;

ARM Assembly Code
; R0 = i, R1 = sum

MOV R0, #9 ; i = 9
MOV R1, #0 ; sum = 0

FOR
ADD  R1, R1, R0 ; sum=sum + i
SUBS R0, R0, #1 ; i = i – 1

; and set flags
BNE  FOR ; if (i!=0) 

; repeat loop

In ARM, decremented loop variables are more efficient

for Loops: Decremented Loops



Lecture 17 <81> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
// adds numbers from 1-9
int sum = 0

for (i=9; i!=0; i=i-1)
sum = sum + i;

ARM Assembly Code
; R0 = i, R1 = sum

MOV R0, #9 ; i = 9
MOV R1, #0 ; sum = 0

FOR
ADD  R1, R1, R0 ; sum=sum + i
SUBS R0, R0, #1 ; i = i – 1

; and set flags
BNE  FOR ; if (i!=0) 

; repeat loop

In ARM, decremented loop variables are more efficient

Saves 2 instructions per iteration:
• Decrement loop variable & compare: SUBS R0, R0, #1
• Only 1 branch – instead of 2

for Loops: Decremented Loops



Lecture 17 <82> Digital Design and Computer Architecture: ARM® Edition © 2015

Programming Building Blocks
• Data-processing Instructions
• Conditional Execution
• Branches
• High-level Constructs:

§ if/else statements
§ for loops
§ while loops
§ arrays
§ function calls



Lecture 17 <83> Digital Design and Computer Architecture: ARM® Edition © 2015

• Access large amounts of similar data

§ Index: access to each element

§ Size: number of elements

Arrays



Lecture 17 <84> Digital Design and Computer Architecture: ARM® Edition © 2015

• 200-element array
§ Base address = 0x14000000 (address of first 

element, scores[0])

§ Array elements accessed relative to base address

Arrays



Lecture 17 <85> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[200];
array[0] = array[0] * 8;
array[1] = array[1] * 8;

ARM Assembly Code
; R0 = array base address

Accessing Arrays



Lecture 17 <86> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[5];
array[0] = array[0] * 8;
array[1] = array[1] * 8;

ARM Assembly Code
; R0 = array base address

MOV R0, #0x60000000        ; R0 = 0x60000000

LDR R1, [R0] ; R1 = array[0]
LSL R1, R1, 3 ; R1 = R1 << 3 = R1*8
STR R1, [R0] ; array[0] = R1

LDR R1, [R0, #4] ; R1 = array[1]
LSL R1, R1, 3 ; R1 = R1 << 3 = R1*8
STR R1, [R0, #4] ; array[1] = R1

Accessing Arrays



Lecture 17 <87> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[200];
int i;

for (i=199; i >= 0; i = i - 1)
array[i] = array[i] * 8;

ARM Assembly Code
; R0 = array base address, R1 = i

Arrays using for Loops



Lecture 17 <88> Digital Design and Computer Architecture: ARM® Edition © 2015

C Code
int array[200];
int i;

for (i=199; i >= 0; i = i - 1)
array[i] = array[i] * 8;

ARM Assembly Code
; R0 = array base address, R1 = i
MOV R0, 0x60000000
MOV R1, #199

FOR
LDR  R2, [R0, R1, LSL #2] ; R2 = array(i)
LSL  R2, R2, #3 ; R2 = R2<<3 = R3*8
STR  R2, [R0, R1, LSL #2] ; array(i) = R2
SUBS R1, R1, #1 ; i = i – 1

; and set flags
BPL  FOR ; if (i>=0) repeat loop

Arrays using for Loops



Lecture 17 <89> Digital Design and Computer Architecture: ARM® Edition © 2015

• American Standard Code for Information 

Interchange

• Each text character has unique byte value

– For example, S = 0x53, a = 0x61, A = 0x41

– Lower-case and upper-case differ by 0x20 (32)

ASCII Code



Lecture 17 <90> Digital Design and Computer Architecture: ARM® Edition © 2015

Cast of Characters


