E85 Digital Design \& Computer Engineering

Lecture 1:
 Logic Gates \& Analog Behavior of Digital Systems

- Logic Gates
- Verilog
- Logic Levels
- CMOS Transistors
- Power Consumption
- Datasheets

Logic Gates

- Perform logic functions:
- inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
- NOT gate, buffer
- Two-input:
- AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

NOT

$$
Y=\bar{A}
$$

$$
\begin{array}{c|c}
A & Y \\
\hline 0 & \\
1 &
\end{array}
$$

BUF

$$
Y=A
$$

$$
\begin{array}{c|c}
A & Y \\
\hline 0 & \\
1 &
\end{array}
$$

Two-Input Logic Gates

AND

$Y=A B$

A	B	Y
0	0	
0	1	
1	0	
1	1	

OR

$$
Y=A+B
$$

A	B	Y
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

XOR

$$
Y=A \oplus B
$$

$$
\begin{array}{cc|c}
A & B & Y \\
\hline 0 & 0 & \\
0 & 1 & \\
1 & 0 & \\
1 & 1 &
\end{array}
$$

NAND

$Y=\overline{A B}$

A	B	Y
0	0	
0	1	
1	0	
1	1	

NOR

$$
Y=\overline{A+B}
$$

XNOR

$$
Y=\overline{A \oplus B}
$$

Multiple-Input Logic Gates

NOR3

$$
Y=\overline{A+B+C}
$$

AND3

$$
Y=A B C
$$

A	B	C	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- Multi-input XOR: Odd parity (true if odd number of inputs are true)

SystemVerilog Description

```
module gates(input logic a, b, c,
                                    output logic y1, y2, y3, y4, y5);
not g1(y1, a);
and g2(y2, a, b);
or g3(y3, a, b, c);
nand g4(y4, b, c);
xor g5(y5, a, c);
endmodule
```


Logic Levels

- Discrete voltages represent 1 and 0
- For example:
- $0=$ ground (GND) or 0 volts
$-1=V_{D D}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1 ?
- What about 3.2 volts?

Logic Levels

- Range of voltages for 1 and 0
- Different ranges for inputs and outputs to allow for noise

What is Noise?

- Anything that degrades the signal
- E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

Noise

The Static Discipline

- With logically valid inputs, every circuit element must produce logically valid outputs
- Use limited ranges of voltages to represent discrete values

Noise Margins

Output Characteristics $V_{D D}$ Input Characteristics

Noise Margins

Output Characteristics $V_{D D}$ Input Characteristics

High Noise Margin: $N M_{H}=$

Low Noise Margin: $N M_{L}=$

DC Transfer Characteristics

Ideal Buffer:

$N M_{H}=N M_{L}=V_{D D} / 2$

Real Buffer:

$N M_{H}, N M_{L}<V_{D D} / 2$

DC Transfer Characteristics

V_{DD} Scaling

- In 1970's and 1980's, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- V_{DD} has dropped
- Avoid frying tiny transistors
- Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Be careful connecting chips with different supply voltages

V_{DD} Scaling

- In 1970's and 1980's, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- V_{DD} has dropped
- Avoid frying tiny transistors
- Save power
-3.3 V, $2.5 \mathrm{~V}, 1.8 \mathrm{~V}, 1.5 \mathrm{~V}, 1.2 \mathrm{~V}, 1.0 \mathrm{~V}, \ldots$
- Be careful connecting chips with different supply voltages

Chips operate because they contain magic smoke
Proof: if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	$V_{D D}$	$V_{I L}$	$V_{I H}$	$V_{O L}$	$V_{O H}$
TTL	$5(4.75-5.25)$	0.8	2.0	0.4	2.4
CMOS	$5(4.5-6)$	1.35	3.15	0.33	3.84
LVTTL	$3.3(3-3.6)$	0.8	2.0	0.4	2.4
LVCMOS	$3.3(3-3.6)$	0.9	1.8	0.36	2.7

Transistors

- Logic gates built from transistors
-3-ported voltage-controlled switch
- 2 ports connected depending on voltage of 3rd
- d and s are connected (ON) when g is 1

$$
g=0 \quad g=1
$$

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
- n-type (free negative charges, electrons)
- p-type (free positive charges, holes)

MOS Transistors

- Metal oxide silicon (MOS) transistors:
- Polysilicon (used to be metal) gate
- Oxide (silicon dioxide) insulator
- Doped silicon

Transistors: nMOS

Gate $=0$
OFF (no connection between source and drain)

Gate $=1$
ON (channel between source and drain)

Transistors: pMOS

pMOS transistor is opposite

- $\mathbf{O N}$ when Gate $=\mathbf{0}$
- OFF when Gate = 1

Transistor Function

Transistor Function

- nMOS: pass good 0's, so connect source to GND
- pMOS: pass good 1's, so connect source to $V_{D D}$

CMOS Gates: NOT Gate

NOT

A	P1	N1	\boldsymbol{Y}
0			
1			

CMOS Gates: NAND Gate

NAND

\boldsymbol{A}	\boldsymbol{B}	$\mathbf{P} 1$	$\mathbf{P} 2$	$\mathbf{N} 1$	$\mathbf{N} 2$	\boldsymbol{Y}
0	0					
0	1					
1	0					
1	1					

CMOS Gate Structure

NOR3 Gate

How do you build a three-input NOR gate?

AND2 Gate

How do you build a two-input AND gate?

Transmission Gates

- nMOS pass 1's poorly
- pMOS pass O's poorly
- Transmission gate is a better switch - passes both 0 and 1 well
- When $E N=1$, the switch is ON :
$-E N=0$ and A is connected to B
- When $E N=0$, the switch is OFF:
$-A$ is not connected to B

Gordon Moore, 1929-

- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: number of transistors on a computer chip doubles every year (observed in 1965)
- Since 1975, transistor counts have doubled every two years.

Moore's Law

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost $\$ 100$, get one million miles to the gallon, and explode once a year . . ." (Robert Cringely, Infoworld)

Power Consumption

Power = Energy consumed per unit time

- Dynamic power consumption
- Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
- Energy required to charge a capacitance, C, to $V_{D D}$ is $C V_{D D}{ }^{2}$
- Circuit running at frequency f : transistors switch (from 1 to 0 or vice versa) at that frequency
- Capacitor is charged $f / 2$ times per second (discharging from 1 to 0 is free)
- Dynamic power consumption:

$$
P_{\text {dynamic }}=1 / 2 C V_{D D}^{2} f
$$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, $I_{D D}$ (also called the leakage current)
- Static power consumption:

$$
P_{\text {static }}=I_{D D} V_{D D}
$$

Power Consumption Example

- Estimate the power consumption of a mobile phone running Angry Birds

$$
\begin{aligned}
& -V_{D D}=0.8 \mathrm{~V} \\
& -C=5 \mathrm{nF} \\
& -f=2 \mathrm{GHz} \\
& -I_{D D}=10 \mathrm{~mA}
\end{aligned}
$$

$$
P=1 / 2 C V_{D D}^{2} f+I_{D D} V_{D D}
$$

$$
=1 / 2(5 \mathrm{nF})(0.8 \mathrm{~V})^{2}(2 \mathrm{GHz})+(10 \mathrm{~mA})(0.8 \mathrm{~V})
$$

$$
=(3.2+0.008) \mathrm{W} \approx 3.2 \mathrm{~W}
$$

Datasheets

- Datasheets are a contract between the manufactuer and the user.
- 74LS04 has six NOT gates
- Pinout
- Input A, output Y
- Also hook up VCC and GND

74-series are logic gates
LS: Low power Shottky
HC: High speed CMOS
04: six NOT gates

- Dependable Texas Instruments Quality and Reliability
description/ordering information
These devices contain six independent inverters. SN7404, SN74SO4...D, N, OR NS PACKAGE SN74LSO4 . . D DB, N, OR NS PACKAGE
 (TOP VEW)

Datasheets

- Chips are available in plastic or ceramic packages with different temperature ratings.
- Dual Inline Package (DIP)
- Small Outline IC (SOIC)
- Small Outline Package (SOP)
- Leadless Chip Carrier (LCC)

SN5404, SN54LS04, SN54S04,
SN7404, SN74LS04, SN74S04
HEX INVERTERS

ORDERING INFORMATION				
${ }^{\text {A }}$		KAGEt	ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP - N	Tube	SN7404N	SN7404N
		Tube	SN74LLS04N	SN74LS04N
		Tube	SN74S04N	SN74S04N
	SOIC - D	Tube	SN7404D	7404
		Tape and reel	SN7404DR	
		Tube	SN74LS04D	L504
		Tape and reel	SN74LS04DR	
		Tube	SN74S04D	S04
		Tape and reel	SN74S04DR	
	SOP - ns	Tape and reel	SN7404NSR	SN7404
		Tape and reel	SN74LS04NSR	74LS04
		Tape and reel	SN74S04NSR	74504
	SSOP - DB	Tape and reel	SN74LS04DBR	LS04
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube	SN5404J	SN5404J
		Tube	SNJ5404J	SNJ5404J
		Tube	SN54L-504J	SN54LS04J
		Tube	SN54504J	SN54504J
		Tube	SNJ54LS04J	SNJ54LS04J
		Tube	SNJ54504J	SNJ54S04J
	CFP - W	Tube	SNJ5404W	SNJ5404W
		Tube	SNJ54LSO4W	SNJ54LS04W
		Tube	SNJ54504W	SNJ54S04W
	LCCC - FK	Tube	SNJ54LS04FK	SNJ54LS04FK
		Tube	SNJ54504FK	SNJ54504FK

are available at wwwticicom/scl/package

$\begin{array}{c}\text { FUNCTIIN TABLE } \\ \text { (each inverter) }\end{array}$

性 Texas

Datasheets

- Six NOT gates

- Input A, output Y

Datasheets

－Internal structure

－Not too important for you．
－NPN transistor at middle and resistors above and below comprise the inverter
－NPN transistors on right form an output stage for driving more current

蚂 Texas
INSTRXUMENTS
䟚

＊${ }^{1}$ Texas

Abstract

正

Datasheets

- Absolute Maximums specify when the chip will catch on fire or suffer permanent damage. It is not guaranteed to function correctly near these levels. Don't use for design purposes.
- Recommended Operating Conditions say how it should be used.
- Different vendors have different names for conditions
- Use some common sense to interpret
recommended operating conditions (see Note 3)

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

Datasheets

- Note 74LS vs. 74
- Supply voltage (V_{cc})
- Logic levels ($\left.\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}\right)$
- Currents
- Output ($\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{OS}}$)
- Input ($\left.I_{1}, I_{H}, I_{L}\right)$
- Supply ($I_{\text {cCH }}, I_{\mathrm{CCL}}$)
- Propagation Delay ($\left.\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}\right)$

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

recommended operating conditions (see Note 3)

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

Datasheets

- Mechanical data important when you are designing a printed circuit board.
- Make sure the pins fit your board!

Wan TEXAS

$\substack{\text { Istruminent } \\ \text { mmiticom }}$

Example: Fanout

What is the maximum fanout for a 74LS04 NOT gate?

Solution:
Maximum current into a 74LS04 is $\mathrm{I}_{\mathrm{IL}}=0.4 \mathrm{~mA}$. Output voltage V_{OL} is guaranteed at $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ Hence, maximum fanout is $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{IL}}=20$.

Example: Power Consumption

One 74LS04 NOT gate drives 20 identical gates. $V_{C C}=5 \mathrm{~V}$. What is the power consumption of the entire system if the input to the first gate switches at 1 MHz ?

Static Power:

$$
\begin{aligned}
& \text { Each gate draws } \mathrm{I}_{\mathrm{cC}}=\left(\mathrm{I}_{\mathrm{CLL}}+\mathrm{I}_{\mathrm{CCH}}\right) / 2=(6.6+2.4 \mathrm{~mA}) / 2=4.5 \mathrm{~mA} \\
& I_{\text {static }}=(21 \text { gates })(4.5 \mathrm{~mA} / \mathrm{gate})=94.5 \mathrm{~mA} \\
& \mathrm{P}_{\text {static }}=94.5 \mathrm{~mA} * 5 \mathrm{~V}=472.5 \mathrm{~mW}
\end{aligned}
$$

Dynamic Power
$\mathrm{C}_{\text {in }}$ is not specified. Assume $15 \mathrm{pF} /$ gate $* 20$ gates $=\mathbf{3 0 0} \mathrm{pF}$.
$\mathrm{P}=\mathrm{CV}_{\mathrm{DD}} 2 \mathrm{f}=(300 \times 10-12)(52)(1 \times 106)=7.5 \mathrm{~mW}$
$P_{\text {total }}=P_{\text {static }}+P_{\text {dynamic }}=480 \mathrm{~mW}$
TTL power is primarily static

