E85 Digital Design \& Computer Engineering

Lecture 0: Introduction

Lecture 0

- Course Overview
- Learning Objectives
- Schedule
- Assignments
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems

Learning Objectives

- Build digital systems at all levels of abstraction from transistors through circuits, logic, microarchitecture, architecture, and C culminating with implementing and programming a microprocessor soft core on a field programable gate array.
- Manage complexity using the digital abstraction, data types, static and dynamic disciplines, and hierarchical design.
- Design and implement combinational and sequential digital circuits using schematics and hardware description languages.

Learning Objectives Cont.

- Program a commercial microcontroller in C and assembly language and use it in a physical system.
- Begin the practice of implementing and debugging digital systems with appropriate lab techniques including breadboarding, interpreting datasheets, and using field-programmable gate arrays and microcontroller boards, simulators, debuggers, and test-and-measurement equipment.

Big Picture

- Start from the fundamentals so you understand why, not just how.
- What makes the system tick on the inside?
- Some of you will become computer engineers.
- This material is the foundation of your career.
- Most of you will pursue other paths.
- Digital systems are a tremendously valuable tool in your toolbox.
- This course will get you to the point you can be dangerous!
- Skills about managing complexity, designing nontrivial systems, debugging carry over to other fields.
- Programmable microprocessors are one of humanities great ideas.
- Computing has fundamentally changed the world we live in.
- If you like this course, take E155 next Fall.

Schedule

Lecture	Date	Topics	Readings	Assignment
		Introduction: digital abstraction,	$1.1-1.5$, A1-A4,	
1	$9 / 4$	number systems, logic gates, HDL	$4.1-4.2 .2$	
10	$9 / 11$	Static discipline, CMOS transistors	$1.6-1.9$, A5-A7	
Combinational logic design	$2.1-2.8$			
11	$9 / 16$	Timing, sequential circuits	$2.9-2.10,3.1-3.2$	Lab 1 due Digital Circuits
100	$9 / 16$	Finite state machines	$3.3-3.4$	PS 2 due
101	$9 / 23$	Dynamic discipline, metastability	$3.5-3.7$	Lab 2 due Comb Logic
110	$9 / 25$	Hardware description languages: Verilog	$4.1-4.3$	PS 3 due
111	$9 / 30$	Verilog, Part II	$4.4-4.10$	Lab 3 due Structural FSM
1000	$10 / 2$	Arithmetic circuits	$5.1-5.2$	PS 4 due
1001	$10 / 7$	Fixed and floating-point number systems	5.3	Lab 4 due Behavioral FSM
1010	$10 / 9$	Sequential building blocks, arrays	$5.4-5.7$	PS 5 due
1011	$10 / 14$	Catchup / Midterm Review		
$10 / 16$	Midterm			
1100	$10 / 22$	HAPPY FALL BREAK! C Programming	Cab Building blocks	
1101	$10 / 28$	C Programming	C.1-C.7	C.8-C.11

Assignments

- Mondays: Labs (30\%)
- Must complete Lab 11 to pass the class
- Digital Lab Tutoring Sat 12-2, Sun 12-6
- Wednesdays: Problem Sets (20\%)
- TBP Tutoring Sunday 8-9, Monday 7-9 Platt
- Midterm \& Final (50\%)
- You can have a 1-week extension on one assignment
- Just turn it in with your assignment next week
- Your lowest lab and problem set score will be dropped

Collaboration Policy

- Speak with other students, instructor, tutors AFTER you have made an effort by yourself.
- Ask about tool issues in the lab!
- Turn in your own work. Not identical to others.
- Don't sit at adjacent computers and work in lockstep.
- Pair programming prohibited.
- Credit classmates with whom you discussed ideas.
- Don't refer to old solutions!

Textbook

- Many students have found it enjoyable and useful
- Suggest reading before class, come with questions
- Reread key parts as you are doing the assignments
- Not everything in the assignments is covered in lecture.
- Copies available in the Eng. Lounge and Digital Lab.

Background

- Microprocessors have revolutionized our world
- Cell phones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to $\$ 412$ billion in 2017

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three -y's
- Hierarchy
- Modularity
- Regularity

Abstraction

Hiding details when they aren't important

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
- Discrete voltages instead of continuous
- Simpler to design than analog circuits - can build more sophisticated systems
- Digital systems replacing analog predecessors: i.e., digital cameras, digital television, cell phones, CDs

The Three -y's

- Hierarchy
-
- Modularity
-
- Regularity
—

Example: The Flintlock Rifle

- Hierarchy
- Three main modules: lock, stock, and barrel
- Submodules of lock: hammer, flint, frizzen, etc.

Example: The Flintlock Rifle

- Modularity
- Function of stock: mount barrel and lock
- Interface of stock: length and location of mounting pins
- Regularity
- Interchangeable
 parts

The Digital Abstraction

- Most physical variables are continuous
- Voltage on a wire
- Frequency of an oscillation
- Position of a mass
- Digital abstraction considers discrete subset of values

The Analytical Engine

- Designed by Charles Babbage from 1834-1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Digital Discipline: Binary Values

- Two discrete values:
- 1's and 0's
- 1, TRUE, HIGH
- 0, FALSE, LOW
- 1 and 0: voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and

ceober moter

Scanned at the American

 Institute of Physics NOT
Number Systems

- Decimal numbers

umnjoo s,0001 umnjos s,001 umnjo s, 0 L umnjoo s, \downarrow

- Binary numbers

11012

Powers of Two

- $2^{0}=$
- $2^{8}=$
- $2^{1}=$
- $2^{9}=$
- $2^{2}=$
- $2^{10}=$
- $2^{3}=$
- $2^{11}=$
- $2^{4}=$
- $2^{12}=$
- $2^{5}=$
- $2^{13}=$
- $2^{6}=$
- $2^{14}=$
- $2^{7}=$
- $2^{15}=$

Handy to memorize

Number Conversion

- Binary to decimal conversion:
- Convert 10011_{2} to decimal
-
- Decimal to binary conversion:
- Convert 47_{10} to binary
-

Decimal to Binary Conversion

- Two methods:
- Method 1: Find the largest power of 2 that fits, subtract and repeat
- Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

Decimal to Binary Conversion

53_{10}
Method 1: Find the largest power of 2 that fits, subtract and repeat

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

Decimal to Binary Conversion

Another example: Convert 75_{10} to binary.

or

Binary Values and Range

- N-digit decimal number
- How many values?
- Range?
- Example: 3-digit decimal number:
-
- N-bit binary number
- How many values?
- Range:
- Example: 3-digit binary number:
-

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	9	1000
9	10	1001
A	11	1010
B	12	1011
C	13	1100
D	14	1101
E	15	1110
F	1111	

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
- Convert 4AF 16 (also written 0x4AF) to binary
-
- Hexadecimal to decimal conversion:
- Convert 4AF ${ }_{16}$ to decimal
-

Bits, Bytes, Nibbles...

- Bits
- Bytes \& Nibbles

10010110
most
significant significant
bit
least
bit
byte
10010110
nibble

Large Powers of Two

- $2^{10}=1$ kilo
- $2^{20}=1$ mega
- $2^{30}=1$ giga
- $2^{40}=1$ tera ≈ 1 trillion
- $2^{50}=1$ peta ≈ 1 quadrillion
- $2^{60}=1$ exa $\quad \approx 1$ quintillion

Estimating Powers of Two

- What is the value of 2^{24} ?
- How many values can a 32-bit variable represent?

Addition

- Decimal

$11 \leftarrow$ carries 3734
 + 5168 8902

- Binary

> | | 11 |
| ---: | :--- |
| 1011 | |
| $+\quad 0011$ | |
| 1110 | |

Binary Addition Examples

- Add the following 4-bit binary numbers

1001
 + 0101

- Add the following 4-bit binary

numbers

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of $11+6$

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
- Positive number: sign bit $=0 \quad A:\left\{a_{N-1}, a_{N-2}, \ldots a_{2}, a_{1}, a_{0}\right\}$
- Negative number: sign bit = 1

$$
A=(-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_{i} 2^{i}
$$

- Example, 4-bit sign/mag representations of ± 6 :
$+6=$
$-6=$
- Range of an N-bit sign/magnitude number:

Sign/Magnitude Numbers

Problems:

- Addition doesn't work, for example -6 + 6:

> 1110
> +0110

10100 (wrong!)

- Two representations of $0(\pm 0)$: 1000 0000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
- Addition works
- Single representation for 0

Two's Complement Numbers

- msb has value of -2^{N-1}

$$
A=a_{N-1}\left(-2^{N-1}\right)+\sum_{i=0}^{N-2} a_{i} 2^{i}
$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, $0=$ positive)
- Range of an N-bit two's complement number:

"Taking the Two's Complement"

- "Taking the Two's complement" flips the sign of a two's complement number
- Method:

1. Invert the bits
2. Add 1

- Example: Flip the sign of $3_{10}=0011_{2}$

1.
2.

Two's Complement Examples

- Take the two's complement of $6_{10}=0110_{2}$ 1.

2.

- What is the decimal value of the two's complement number 1001_{2} ?

1.
2.

Two's Complement Addition

- Add $6+(-6)$ using two's complement numbers

$$
\begin{array}{r}
0110 \\
+\quad 1010
\end{array}
$$

- Add -2 + 3 using two's complement numbers

$$
\begin{array}{r}
1110 \\
+\quad 0011
\end{array}
$$

Two's Complement Addition

- Add $6+(-6)$ using two's complement numbers

> 0110
> $+\quad 1010$

- Add -2 + 3 using two's complement numbers

$$
\begin{array}{r}
1110 \\
+\quad 0011 \\
\hline
\end{array}
$$

Increasing Bit Width

Extend number from N to M bits $(M>N)$:

- Sign-extension
- Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same
- Example 1:
- 4-bit representation of $3=0011$
- 8-bit sign-extended value: 00000011 Example 2:
- 4-bit representation of $-5=1011$
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers
- Example 1:
- 4-bit value $=\quad 0011=3_{10}$
- 8 -bit zero-extended value: $00000011=310$

Example 2:

- 4-bit value = $1011=-5_{10}$
- 8-bit zero-extended value: $00001011=11_{10}$

Number System Comparison

Number System	Range
Unsigned	$\left[0,2^{N}-1\right]$
Sign/Magnitude	$\left[-\left(2^{N-1}-1\right), 2^{N-1}-1\right]$
Two's Complement	$\left[-2^{N-1}, 2^{N-1}-1\right]$

For example, 4-bit representation:

