

Page 1 of 4

E85: Digital Electronics and Computer Engineering
Lab 9: Airbag Trigger

Objective
The purpose of this lab is to learn to write performance-optimized code in C and
assembly language and to understand the relationship between the two.
Specifically, you will design a microcontroller circuit for an airbag trigger that can
respond to a simulated impact as quickly as possible, and will compare your
optimized assembly and C versions to a non-optimized C version.

0. Instruction Set
You will do this lab on the NUCLEO board, which contains a Cortex-M0
microprocessor. The Cortex-M0 runs the ARM v6M version of the Thumb
instruction set, which differs from the ARM v4 version we have emphasized in class.
The instruction set is summarized in Table 3.3 of the Cortex-M0 Technical
Reference Manual on page 3-11 (also available on the class webpage). Thumb
instructions are packed into 16 bits to better use the limited program memory on a
small microcontroller. Most instructions only take two operands, with the first being
both the destination and first source. Most instructions only access registers R0-R7.
Most instructions only come in the S variant.

1. Airbag Trigger
An airbag trigger should deploy an airbag as fast as possible for each occupant of a
vehicle when a collision occurs. For the sake of simplicity, let us model the inputs to
the trigger as two digital signals, one indicating that a seat is occupied, and the
second indicating that a high-G deceleration event has occurred. In this lab, we will
design a microcontroller-based system to monitor the two inputs and assert a
trigger output when both inputs are TRUE. Assume that the inputs come on D0
and D1 and the output is connected to D2. Assume that none of the other pins are
configured as outputs.

2. Baseline Code
The following baseline code (on the web page) is logically correct but not as efficient
as possible. The variables are declared volatile to discourage the compiler from
optimizing much.
// lab9baseline.c
#include "EasyNucleoIO.h"
void triggerCheck(void) {
 volatile int seat, decel, trigger;
 while (1) {
 seat = digitalRead(0);
 decel = digitalRead(1);
 trigger = seat && decel;
 digitalWrite(2, trigger);

Page 2 of 4

 }
}
int main(void) {
 EasyNucleoIOInit();
 pinMode(0, INPUT);
 pinMode(1, INPUT);
 pinMode(2, OUTPUT);

 triggerCheck();
}

● Implement this code on your microcontroller.
● Tie D0 to 1 and apply a pulse on D1 to simulate a sudden deceleration for an

occupied seat.
● Measure the latency from D1 rising to D2 rising using two channels of an

oscilloscope.
● Repeat your experiment 10 times and find the average, maximum, and

standard deviation.

2. Interpreting Assembly Language
● Start the debugger and look at the assembly language code that the Keil

compiler produces for the baseline triggerCheck() code, as well as the
digitalRead and digitalWrite functions it calls. Study it until you
understand how each line relates to the C code.

What is the largest number of instructions that might occur from the time that D1
rises until D2 rises (while the program is in the triggerCheck loop)?

3. Tutorial: Mixing C and Assembly Language
It is not hard to mix C and assembly language programs. For example, the
following flash.c and led.s files are available on the class web page. The C code
contains a prototype for the led function, and the assembly language code
implements it. The argument a is passed in R0.
// flash.c
#include "EasyNucleoIO.h"
// prototype for assembly language function
void led(int a);
int main(void) {
 EasyNucleoIOInit();
 pinMode(13, OUTPUT);
 while(1) {
 led(0);
 delayLoop(200);
 led(1);
 delayLoop(200);
 }
}

; led.s

Page 3 of 4

; turn LED on D13 / PB3 on or off
 AREA |.text|, CODE, READONLY ; define this file as code
 EXPORT led ; declare LED to be called externally

GPIOB_ODR EQU 0x48000414 ; define constant address of port, D13 is at B
 ; bank of STM32F0x2 u-controller,

led
 PUSH {R4} ; save R4 on stack before changing it
 LDR R4, =GPIOB_ODR ; put point to GPIOB ODR in R4
 LDR R1, [R4] ; R1 = GPIO_ODR
 MOVS R3, #0x08 ; 1 in 4th bit(D13/LED is on PB3, start with PB0)
 CMP R0, #0 ; check if we should turn off LED
 BEQ ledoff ; yes: skip to ledoff
ledon
 ORRS R1, R1, R3 ; otherwise set PB3 to 1
 B finish ; and skip
ledoff
 MVNS R3, R3 ; clear PB3 to 0
 ANDS R1, R1, R3
finish
 STR R1, [R4] ; store R1 back in PORTB_ODR
 POP {R4} ; restore R4 from stack
 BX LR ; equivalent to MOV PC, LR, preferred now

 ALIGN ; make sure code ends on word boundary
 END ; bye bye. Have a nice day.

● Create a new project and add both files. (Note that you will have to choose All
Files or ASM Source File in the file type pulldown to select led.s when adding
the file.) Compile it and run it on the Nucleo board and verify that the LED
flashes. Single-step through the assembly language code and watch how it
works.

4. Assembly Language Implementation
Write your own hand-optimized airbag triggerCheck in assembly language.
Comment out the baseline triggerCheck() function and call your assembly language
function instead.
A suggested approach is to adapt led.s. Determine which bits of which port are
associated with D0, D1, and D2.
A challenge here is to figure out the addresses of the registers controlling these
ports. D0, D1, and D2 all belongs to bank A ports of STM32F0x2 boards (see Nucleo
manual Table 9 at pg 23, or µ-controller course slide pg 18-19). The table also shows
D0 - PA10, D1 - PA9, D2 - PA12. STM32F0xx manual Table 1 (pg 46), (or µ-
controller course slide page 11) shows GPIOA starts at address 0x4800 0000.
Therefore, to write something to GPIOA, we should write to address 0x4800 0014
(see STM32F0xx manual section 8.4.6, page 159, or course slide page 13). If we
want to set D2 to be HIGH, we should set the value at 0x4800 0014 as:

Page 4 of 4

PA
15

PA
14

PA
13

PA
12

PA
11

PA
10

PA
9

PA
8

PA
7

PA
6

PA
5

PA
4

PA
3

PA
2

PA
1

PA
0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

In binary, it is 0001 0000 0000 0000; in hexadecimal, it is 0x1000.
In the same way, if we want to read D0 and D1, we can simply read the value at
address 0x4800 xxxx (find xxxx yourself, see STM32F0xx manual section 8.4.5, page
159, or course slide page 13). Again, D0 and D1 corresponds to pin PA10 and PA9
respectively. For example, if we receive a HIGH at D0, from 0x4800 xxxx we expect
to read:
PA
15

PA
14

PA
13

PA
12

PA
11

PA
10

PA
9

PA
8

PA
7

PA
6

PA
5

PA
4

PA
3

PA
2

PA
1

PA
0

x x x x x 1 x x x x x x x x x x

Write an assembly program that reads D0 and D1; and writes to D2. Use the
debugger and oscilloscope to check how your code works. Then optimize your code.
Repeat your count of the largest number of instructions that might occur from D1 to
D2 and your physical measurements of average and standard deviation in latency.
How much improvement did you achieve?

5. Optimized C Implementation
Rewrite the baseline triggerCheck() function as efficiently as you can in C. Look at
the assembly language output by the compiler, and optimize until you are satisfied.
Repeat your count of the largest number of instructions that might occur from D1 to
D2 and your physical measurements of average and standard deviation in latency.
How do your results compare with the baseline and with your assembly language
code?

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Your assembly language implementation.
3. Your optimized C implementation.
4. A table of instruction count and average, max, and standard deviation of latency

for each of the three implementations.
Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

