

Page 1 of 4

E85: Digital Electronics and Computer Engineering
Lab 11: Multicycle Processor

Objective
In this lab, you will complete a multicycle ARM processor. You must get your
processor working to pass the course.

1. Multicycle ARM Processor
Figure 7.30 (p.414) shows the complete multicycle processor.
Sketch a diagram similar to 7.59 showing your controller, datapath, and memory
modules. Draw a box for the arm module that should encompass the controller and
datapath. Label the signals passing between blocks.
Write a hierarchical Verilog description of the processor. The processor should have
the following module declaration. The memory signals are tapped out for testing
purposes. Use your controller from Lab 10 and any Verilog building blocks you
need from Section 7.6.2 (p. 449-452). The single cycle processor code is on the class
web site and you may wish to cut and paste blocks from it.

module top(input logic clk, reset,
 output logic [31:0] WriteData, Adr,
 output logic MemWrite);

2. Test Bench
The arm_testbench.sv and test code (in assembly and machine language) are on the
class web page. Note that the test code has been enhanced somewhat beyond what
is in Figure 7.60 (p. 453). Study the test bench to understand how it determines if
your tests succeeded or failed.
Your memory should read the test code from the memory file at startup with the
line:

initial $readmemh("memfile.dat", RAM);

Predict what the processor should do while executing the first three instructions.
Table 1 has been filled out for you for the first instruction.
Generate simulation waveforms at least for clk, reset, PC, Instr, state, SrcA, SrcB,
ALUResult, Adr, WriteData, and MemWrite. Display the 32-bit signals in
hexadecimal for ease of reading (select the signals and right click, then choose
Radix). Compare against your expectations. You may wish to add other signals to
help debug. Fix any problems you may find until your code executes the program as
expected and the testbench reports success.

Page 2 of 4

Refer to the previous lab for debugging hints. Fix all relevant warnings from
Quartus and Modelsim before you debug further. It will save you much time to
carefully predict what each of the signals in your waveforms should be doing on
each cycle, and to systematically debug beginning with the first known discrepancy
and working your way backward until you have good inputs and bad outputs and
have isolated the bug.
Particularly common bugs include:

● Copying the single-cycle processor top, arm, or datapath interface with
signals that don’t match the multi-cycle processor. Be sure you have a clear
idea what belongs in each module. You will likely save time if you sketch a
picture similar to Figure 7.59 and identify what signals flow between the arm
and memory modules.

● Connecting signals in different orders in a module declaration vs. in the
instantiation.

● Forgetting to declare internal signals, or giving them the wrong widths.
● Inconsistent capitalization or spelling.

If you’ve checked these and your processor still isn’t working, try adding all the
outputs of the controller to your sim and make sure none are floating or X. If you
still haven’t found the problem, refer to your predicted waveforms in Table 1 and
check that the processor is doing the right thing on each step. If the first few
instructions are correct, you may need to extend the table to predict what the rest of
the program should be doing. (Once you’ve filled out the table for several
instructions, you may get the hang of the pattern and only fill out entries that are
interesting…)

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Diagram showing your memory, arm, datapath, and controller block hierarchy

and names of all signals between them.
3. Hierarchical SystemVerilog for your top-level processor module (and

submodules) matching the declaration given above.
4. Table 1 showing key signals for at least the first three instructions.
5. Simulation waveforms (in the order listed above) at least for the specified

signals. Does your system pass your testbench?
Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

Page 3 of 4

Figure 7.30 Complete multicycle processor

overhead limits the benefits one can hope to achieve from pipelining.
The pipelined processor is similar in hardware requirements to the single-
cycle processor, but it adds eight 32-bit pipeline registers, along with multi-
plexers, smaller pipeline registers, and control logic to resolve hazards.

7.6 HDL REPRESENTATION*
This section presents HDL code for the single-cycle processor supporting
the instructions discussed in this chapter. The code illustrates good coding
practices for a moderately complex system. HDL code for the multicycle
processor and pipelined processor are left to Exercises 7.25 and 7.40.

In this section, the instruction and data memories are separated from
the datapath and connected by address and data busses. In practice, most
processors pull instructions and data from separate caches. However, to
handle literal pools, a more complete processor must also be able to read
data from the instruction memory. Chapter 8 will revisit memory systems,
including the interaction of the caches with main memory.

The processor is composed of a datapath and a controller. The con-
troller, in turn, is composed of the Decoder and the Conditional Logic.
Figure 7.59 shows a block diagram of the single-cycle processor inter-
faced to external memories.

The HDL code is partitioned into several sections. Section 7.6.1 pro-
vides HDL for the single-cycle processor datapath and controller. Section
7.6.2 presents the generic building blocks, such as registers and multiplex-
ers, which are used by any microarchitecture. Section 7.6.3 introduces the
testbench and external memories. The HDL is available in electronic form
on this book’s website (see the Preface).

Controller

Datapath

PC
Instr

DataAdr

WriteData
ReadData

CLK

Reset

Processor External Memory

Im
m

S
rc

M
em

W
rite

M
em

toR
eg

A
LU

S
rc

A
LU

C
ontrol

R
egW

rite

P
C

S
rcA

LU
Flags

A

RD

Instruction
Memory

A

RD

Data
Memory

WD

WE

CLK

ALUResult

Instr

R
egS

rc

CLK

Reset

Figure 7.59 Single-cycle
processor interfaced to external
memory

7.6 HDL Representation* 443

Page 4 of 4

Table 1: Expected Operation (after two cycles of reset)

Step PC Instr State Result Result Notes
3 00 E04F00F S0: Fetch 4 PC+4
4 04 "" S1: Decode 8 PC+4
5 04 "" S6: ExR x ALUResult = 8-8 = 0
6 04 "" S8: ALUWB 0 Result = ALUOUT
7 04 "" S0: Fetch 8 PC+4
8 08 E2802005 S1: Decode C PC+4
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

