E85: Digital Electronics and Computer Engineering
Lab 11: Multicycle Processor

Objective

In this lab, you will complete a multicycle ARM processor. You must get your
processor working to pass the course.

1. Multicycle ARM Processor
Figure 7.30 (p.414) shows the complete multicycle processor.

Sketch a diagram similar to 7.59 showing your controller, datapath, and memory
modules. Draw a box for the arm module that should encompass the controller and
datapath. Label the signals passing between blocks.

Write a hierarchical Verilog description of the processor. The processor should have
the following module declaration. The memory signals are tapped out for testing
purposes. Use your controller from Lab 10 and any Verilog building blocks you
need from Section 7.6.2 (p. 449-452). The single cycle processor code is on the class
web site and you may wish to cut and paste blocks from it.

module top (input logic clk, reset,
output logic [31:0] WriteData, Adr,
output logic MemWrite) ;

2. Test Bench

The arm_testbench.sv and test code (in assembly and machine language) are on the
class web page. Note that the test code has been enhanced somewhat beyond what
1s in Figure 7.60 (p. 453). Study the test bench to understand how it determines if
your tests succeeded or failed.

Your memory should read the test code from the memory file at startup with the
line:

initial $readmemh ("memfile.dat", RAM);

Predict what the processor should do while executing the first three instructions.
Table 1 has been filled out for you for the first instruction.

Generate simulation waveforms at least for clk, reset, PC, Instr, state, SrcA, SrcB,
ALUResult, Adr, WriteData, and MemWrite. Display the 32-bit signals in
hexadecimal for ease of reading (select the signals and right click, then choose
Radix). Compare against your expectations. You may wish to add other signals to
help debug. Fix any problems you may find until your code executes the program as
expected and the testbench reports success.

Page 1 of 4

Refer to the previous lab for debugging hints. Fix all relevant warnings from
Quartus and Modelsim before you debug further. It will save you much time to
carefully predict what each of the signals in your waveforms should be doing on
each cycle, and to systematically debug beginning with the first known discrepancy
and working your way backward until you have good inputs and bad outputs and
have isolated the bug.

Particularly common bugs include:

e Copying the single-cycle processor top, arm, or datapath interface with
signals that don’t match the multi-cycle processor. Be sure you have a clear
1dea what belongs in each module. You will likely save time if you sketch a
picture similar to Figure 7.59 and identify what signals flow between the arm
and memory modules.

e C(Connecting signals in different orders in a module declaration vs. in the
Instantiation.

e Forgetting to declare internal signals, or giving them the wrong widths.

e Inconsistent capitalization or spelling.

If you’ve checked these and your processor still isn’t working, try adding all the
outputs of the controller to your sim and make sure none are floating or X. If you
still haven’t found the problem, refer to your predicted waveforms in Table 1 and
check that the processor is doing the right thing on each step. If the first few
Instructions are correct, you may need to extend the table to predict what the rest of
the program should be doing. (Once you've filled out the table for several
instructions, you may get the hang of the pattern and only fill out entries that are
interesting...)

What to Turn In

1. Please indicate how many hours you spent on this lab. This will be helpful for
calibrating the workload for next time the course is taught.

2. Diagram showing your memory, arm, datapath, and controller block hierarchy
and names of all signals between them.

3. Hierarchical SystemVerilog for your top-level processor module (and
submodules) matching the declaration given above.

4. Table 1 showing key signals for at least the first three instructions.

5. Simulation waveforms (in the order listed above) at least for the specified
signals. Does your system pass your testbench?

Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

Page 2 of 4

Figure 7.30 Complete multicycle processor

CLK
PCWrite
AdrSrc [¢ontrol
MemWrite| Unit
IRWrite ResultSrc
31:28 Cond ALUControl
27:26 op ALUSrcB
25:20 Funct ALUSrcA
15112 Rd ImmSrc
RegWrite
Flags
N—
’> ALUFlags
g CLK
CLK CLK
CLK | CLK B4 | K
WE 19:48 2 RA1 WE3 A CLK
PC RD instr {5 | 4 A1 RD1 0
Adrf A EN o ALUResul |f| ALUOUt o
Instr / Data 1 RAZ A2 RD2 1+ 01
Memory g 15:12 A3 . § 10
wD 2 Register g 4 —l
I wD3 File Y
i R15 v
R—
CLK r/
230 Extend Extimm
ﬂDa‘a _
Result
CLK — —P A
Controller)
Instr Instruction
Reset —] Memory
A —
Y2 A== 5 =2
8131518 |elc|3 |8 RD
Z |213|5|2|9|2|2|=
- o FIEIEIGEGEE
= o |3 z . .
z Q S Figure 7.59 Single-cycle
@ A 4 N CLK processor interfaced to external
|
— memor
PC WE y
Instr <_D A
ataAdr
CLK ALUResult f—F A
Datapath Data
Reset Memory
WriteData f——J» WD
ReadData_j€——————— RD
Processor External Memory

Page 3 of 4

Table 1: Expected Operation (after two cycles of reset)

PC

Instr

State

Result

Result Notes

00

E04FO00F

S0: Fetch

PC+4

04

nn

S1: Decode

PC+4

04

nn

S6: ExR

ALUResult =8-8=0

04

nn

S8: ALUWB

Result = ALUOUT

04

nn

S0: Fetch

PC+4

08

E2802005

S1: Decode

Aloo|o|x [oo |k

PC+4

Page 4 of 4

