

Page 1 of 9

E85: Digital Electronics and Computer Engineering
Lab 10: Multicycle Controller

Objective
In Labs 10 and 11, you will design a multicycle ARM processor in SystemVerilog
and test it on a simple machine language program. This will tie together
everything that you have learned in E85 about digital design, hardware description
languages, assembly language, and microarchitecture, and give you the chance to
design and debug a complex system. In Lab 10, you will build and test the
controller. In Lab 11, you will build the datapath and test the whole system. You
will need a working multicycle processor for your final exam.

1. Multicycle ARM Controller
Before you start developing the controller, make sure to take a look at the following
diagrams. All figures and tables are provided at the end of this document.

➢ Figure 7.41 (p. 423) shows the Main FSM.
➢ Table 7.6 (p. 416) defines the Instruction Decoder.
➢ Page 400 and HDL Example 7.3 (p. 446) show the PC Logic.
➢ Table 7.3 (p. 400) and HDL Example 7.3 (p. 446) define the ALU Decoder.
➢ Table 6.3 (p. 307) and HDL Example 7.4 (p. 447) have the Condition Check

logic.
➢ Figure 7.31 (p. 415) shows the controller for the multicycle processor

implementing a subset of ARMv4.

Write a hierarchical Verilog description of the multicycle controller. When outputs
are don’t care, set them to 0 so they have a deterministic value to simplify testing.

The controller should have the following module declaration and should follow the
hierarchy of Figure 7.31. Remember that Op, Funct, and Rd are bitfields of Instr.
Remember that ALUFlags[3:0] correspond to N, Z, C, and V, respectively.

module controller(input logic clk,
 input logic reset,
 input logic [31:12] Instr,
 input logic [3:0] ALUFlags,
 output logic PCWrite,
 output logic MemWrite,
 output logic RegWrite,
 output logic IRWrite,
 output logic AdrSrc,
 output logic [1:0] RegSrc,
 output logic ALUSrcA,
 output logic [1:0] ALUSrcB,
 output logic [1:0] ResultSrc,
 output logic [1:0] ImmSrc,
 output logic [1:0] ALUControl);

Page 2 of 9

2. Test Bench
Generating good test vectors is often harder than writing the code you are testing.
This semester, the vectors are provided for you to increase the amount of sleep
you’ll get. Get the controller_testbench.sv and controller.tv from the class website.
Read them and understand what they are doing.
Compile and test your controller with Modelsim. Make sure you run for long enough
to get a message that all of the tests were completed with 0 errors.

3. Debugging Hints
Unless you are extraordinary unlucky, your controller won’t work perfectly on the
first try. If it did work, you would have missed out on the main learning objective of
this lab and the next, which is how to systematically debug a complex system. You
will need your controller in Lab 11, so take the time to fully debug.
Here are some tips to reduce the amount of time that debugging will take.
Minimize the number of bugs you have
Each bug takes a long time to locate, so a bit of extra time during the design phase
can save you a lot of time during the debug phase.

● Remember that you are building hardware, so sketch the hardware you want
and write the Verilog idioms that imply that hardware. Don’t fall into the
trap of writing Verilog code without thinking of the hardware it is implying.

● Proofread your code. Make sure your signal names are spelled consistently
and that module inputs/outputs are listed in the correct order.

● Synthesize your design once in Quartus and look for warnings or errors.
Make sure you understand which warnings are normal (e.g. no timing
constraints set) and which need to be fixed. Take these warnings very
seriously; they are the fastest way to detect subtle bugs in your design.

● Simulate your design with Modelsim and look for warnings when compiling.
Modelsim has a different Verilog analyzer and will detect types of mistakes
that don’t produce warnings in Quartus. Take these warnings seriously too.

Minimize the time it takes to run a test
Once you are in the debugging phase, choose a workflow that is efficient so you can
make a change to your code and rerun the test in a matter of seconds rather than
minutes.

● All testing can be done in Modelsim. You do not need to use Quartus, and
recompiling in Quartus is an unnecessary time-consuming step. However, if
you have made major changes, you might wish to occasionally resynthesize
the design in Quartus and look for warnings hinting that you’ve introduced
new bugs.

Page 3 of 9

● Add relevant waveforms in Modelsim. It’s usually worthwhile to add all the
signals in a module that you are debugging so that you don’t have to go
through the tedious process of adding more signals and resimulating.
Change the radix to display 32-bit signals in hexadecimal.

● Remember that you don’t need to restart Modelsim and re-add signals each
time you change your code. Instead:

o Compile -> Compile All
o Make sure you have no warnings
o At the command line, rerun the simulation by typing

▪ restart –f

▪ run 1000 (or however long you wish to run)
Systematically find your bugs
Inexperienced designers can waste enormous amounts of time debugging without a
clear plan in mind. The following techniques can save you many hours.

● Understand what the expected inputs and outputs should be. Write down
your expectations. This takes time, but will usually save far more time than
it takes.

● Find the first place where a signal doesn’t match your expectations. One bad
signal will usually trigger others downstream, so focus your debugging on the
first known error and don’t worry yet about subsequent errors. For example,
if tests 1 and 5 fail, start debugging test 1, not test 5.

● Make sure the simulator displays all signals involved in computing the bad
signal. If necessary, add them to the simulation and resimulate as given
above. If one of these inputs is bad, repeat this process to continue tracing it
back.

● Once all the inputs are good and the output is bad, you’ve localized your bug.
Examine the relevant Verilog module and fix the mistake.

● Repeat this process until all bugs have been fixed.

Page 4 of 9

What to Turn In
1. Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught.
2. Hierarchical SystemVerilog for your controller module matching the declaration

given above.
3. Does your controller pass your test vectors?
Please indicate any bugs you found in this lab manual, or any suggestions you
would have to improve the lab.

Page 5 of 9

Figure 7.31 Multicycle control unit

Page 6 of 9

Figure 7.41 Complete multicycle control FSM

Page 7 of 9

Table 6.3 Condition mnemonics

Table 7.3 ALU Decoder truth table

Table 7.6 Instr Decoder logic for RegSrc and ImmSrc

Page 8 of 9

HDL Example 7.3 Decoder

module decoder(input logic [1:0] Op,
 input logic [5:0] Funct,
 input logic [3:0] Rd,
 output logic [1:0] FlagW,
 output logic PCS, RegW, MemW,
 output logic MemtoReg, ALUSrc,
 output logic [1:0] ImmSrc, RedSrc, ALUControl);

logic [9:0] controls;
 logic Branch, ALUOp;

 //Main Decoder
 always_comb
 casex(Op)
 // Data-processing immediate

2'b00: if(Funct[5]) controls = 10'b0000101001;
 // Data-processing register
 else controls = 10'b0000001001;
 // LDR
 2'b01: if(Funct[0]) controls = 10'b0001111000;
 // STR
 else controls = 10'b1001110100;
 // B
 2'b10: controls = 10'b0110100010;
 // Unimplemented
 default: controls = 10'bx;
 endcase

 assign {RegSrc,ImmSrc,ALUSrc,MemtoReg,RegW,MemW,Branch,ALUOp}=controls;

 // ALU Decoder
 always_comb
 if(ALUOp) begin // which DP Instr
 case(Funct[4:1])
 4'b0100: ALUControl = 2'b00; // ADD
 4'b0010: ALUControl = 2'b01; // SUB
 4'b0000: ALUControl = 2'b10; // AND
 4'b1100: ALUControl = 2'b11; // ORR
 default: ALUControl = 2'bx; // unimplemented
 endcase

 // update flags if S bit is set (C&V only for arith)
 FlagW[1] = Funct[0];
 FlagW[0] = Funct[0]&(ALUControl==2'b00|ALUcontrol==2'b01);
 end else begin
 ALUControl = 2'b00; // add for non-DP instructions
 FlagW = 2'b00; // don't update Flags
 end

 // PC Logic
 assign PCS = ((Rd==4'b1111)&RegW)|Branch;
endmodule

Page 9 of 9

HDL Example 7.4 Conditional Logic

module condlogic(input logic clk, reset,
 input logic [3:0] Cond,
 input logic [3:0] ALUFlags,
 input logic [1:0] FlagW,
 input logic PCS, RegW, MemW,
 output logic PCSrc, RegWrite, MemWrite);

 logic [1:0] FlagWrite;

logic [3:0] Flags;
logic CondEx;

flopenr #(2)flagreg1(clk,reset,FlagWrite[1],ALUFlags[3:2],Flags[3:2]);
flopenr #(2)flagreg0(clk,reset,FlagWrite[0],ALUFlags[1:0],Flags[1:0]);

//write controls are conditional
condcheck cc(Cond, Flags, CondEx);
assign FlagWrite = FlagW & {2{CondEx}};
assign RegWrite = RegW & CondEx;
assign MemWrite = MemW & CondEx;
assign PCSrc = PCS & CondEx;

endmodule

module condcheck(input logic [3:0] Cond,

 input logic [3:0] Flags,
 output logic CondEx);

 logic neg, zero, carry, overflow, ge;

 assign {neg, zero, carry, overflow} = Flags;

assign ge = (neg == overflow);

always_comb
 case(Cond)

4'b0000: CondEx = zero; // EQ
4'b0001: CondEx = ~zero; // NE
4'b0010: CondEx = carry; // CS
4'b0011: CondEx = ~carry; // CC
4'b0100: CondEx = neg; // MI
4'b0101: CondEx = ~neg; // PL
4'b0110: CondEx = overflow; // VS
4'b0111: CondEx = ~overflow; // VC
4'b1000: CondEx = carry&~zero; // HI
4'b1001: CondEx = ~(carry&~zero); // LS
4'b1010: CondEx = ge; // GE
4'b1011: CondEx = ~ge; // LT
4'b1100: CondEx = ~zero≥ // GT
4'b1101: CondEx = ~(~zero&ge); // LE
4'b1110: CondEx = 1'b1; // Always
default: CondEx = 1'bx; // undefined

endcase
endmodule

