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E85: Digital Electronics and Computer Engineering 
Lab 10: Multicycle Controller 

Objective 
In Labs 10 and 11, you will design a multicycle ARM processor in SystemVerilog 
and test it on a simple machine language program.  This will tie together 
everything that you have learned in E85 about digital design, hardware description 
languages, assembly language, and microarchitecture, and give you the chance to 
design and debug a complex system.  In Lab 10, you will build and test the 
controller.  In Lab 11, you will build the datapath and test the whole system. You 
will need a working multicycle processor for your final exam. 

1. Multicycle ARM Controller 
Before you start developing the controller, make sure to take a look at the following 
diagrams. All figures and tables are provided at the end of this document. 

➢ Figure 7.41 (p. 423) shows the Main FSM.  
➢ Table 7.6 (p. 416) defines the Instruction Decoder.  
➢ Page 400 and HDL Example 7.3 (p. 446) show the PC Logic.   
➢ Table 7.3 (p. 400) and HDL Example 7.3 (p. 446) define the ALU Decoder.   
➢ Table 6.3 (p. 307) and HDL Example 7.4 (p. 447) have the Condition Check 

logic. 
➢ Figure 7.31 (p. 415) shows the controller for the multicycle processor 

implementing a subset of ARMv4.  
 
Write a hierarchical Verilog description of the multicycle controller.  When outputs 
are don’t care, set them to 0 so they have a deterministic value to simplify testing. 
 
The controller should have the following module declaration and should follow the 
hierarchy of Figure 7.31.  Remember that Op, Funct, and Rd are bitfields of Instr. 
Remember that ALUFlags[3:0] correspond to N, Z, C, and V, respectively. 

module controller(input  logic         clk, 
                  input  logic         reset, 
                  input  logic [31:12] Instr, 
                  input  logic [3:0]   ALUFlags, 
                  output logic         PCWrite, 
                  output logic         MemWrite, 
                  output logic         RegWrite, 
                  output logic         IRWrite, 
                  output logic         AdrSrc, 
                  output logic [1:0]   RegSrc, 
                  output logic         ALUSrcA, 
                  output logic [1:0]   ALUSrcB, 
                  output logic [1:0]   ResultSrc, 
                  output logic [1:0]   ImmSrc, 
                  output logic [1:0]   ALUControl); 
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2. Test Bench 
Generating good test vectors is often harder than writing the code you are testing. 
This semester, the vectors are provided for you to increase the amount of sleep 
you’ll get. Get the controller_testbench.sv and controller.tv from the class website. 
Read them and understand what they are doing. 
Compile and test your controller with Modelsim. Make sure you run for long enough 
to get a message that all of the tests were completed with 0 errors. 

3. Debugging Hints 
Unless you are extraordinary unlucky, your controller won’t work perfectly on the 
first try.  If it did work, you would have missed out on the main learning objective of 
this lab and the next, which is how to systematically debug a complex system. You 
will need your controller in Lab 11, so take the time to fully debug.  
Here are some tips to reduce the amount of time that debugging will take. 
Minimize the number of bugs you have 
Each bug takes a long time to locate, so a bit of extra time during the design phase 
can save you a lot of time during the debug phase.   

● Remember that you are building hardware, so sketch the hardware you want 
and write the Verilog idioms that imply that hardware.  Don’t fall into the 
trap of writing Verilog code without thinking of the hardware it is implying. 

● Proofread your code.  Make sure your signal names are spelled consistently 
and that module inputs/outputs are listed in the correct order.  

● Synthesize your design once in Quartus and look for warnings or errors.  
Make sure you understand which warnings are normal (e.g. no timing 
constraints set) and which need to be fixed.  Take these warnings very 
seriously; they are the fastest way to detect subtle bugs in your design. 

● Simulate your design with Modelsim and look for warnings when compiling. 
Modelsim has a different Verilog analyzer and will detect types of mistakes 
that don’t produce warnings in Quartus.  Take these warnings seriously too. 

Minimize the time it takes to run a test 
Once you are in the debugging phase, choose a workflow that is efficient so you can 
make a change to your code and rerun the test in a matter of seconds rather than 
minutes. 

● All testing can be done in Modelsim.  You do not need to use Quartus, and 
recompiling in Quartus is an unnecessary time-consuming step.  However, if 
you have made major changes, you might wish to occasionally resynthesize 
the design in Quartus and look for warnings hinting that you’ve introduced 
new bugs. 
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● Add relevant waveforms in Modelsim.  It’s usually worthwhile to add all the 
signals in a module that you are debugging so that you don’t have to go 
through the tedious process of adding more signals and resimulating.  
Change the radix to display 32-bit signals in hexadecimal. 

● Remember that you don’t need to restart Modelsim and re-add signals each 
time you change your code.  Instead: 

o Compile -> Compile All 
o Make sure you have no warnings 
o At the command line, rerun the simulation by typing 

▪ restart –f  

▪ run 1000 (or however long you wish to run)  
Systematically find your bugs 
Inexperienced designers can waste enormous amounts of time debugging without a 
clear plan in mind.  The following techniques can save you many hours. 

● Understand what the expected inputs and outputs should be.  Write down 
your expectations.  This takes time, but will usually save far more time than 
it takes. 

● Find the first place where a signal doesn’t match your expectations.  One bad 
signal will usually trigger others downstream, so focus your debugging on the 
first known error and don’t worry yet about subsequent errors. For example, 
if tests 1 and 5 fail, start debugging test 1, not test 5. 

● Make sure the simulator displays all signals involved in computing the bad 
signal.  If necessary, add them to the simulation and resimulate as given 
above. If one of these inputs is bad, repeat this process to continue tracing it 
back.   

● Once all the inputs are good and the output is bad, you’ve localized your bug.  
Examine the relevant Verilog module and fix the mistake. 

● Repeat this process until all bugs have been fixed. 
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What to Turn In 
1. Please indicate how many hours you spent on this lab. This will be helpful for 

calibrating the workload for next time the course is taught. 
2. Hierarchical SystemVerilog for your controller module matching the declaration 

given above. 
3. Does your controller pass your test vectors? 
Please indicate any bugs you found in this lab manual, or any suggestions you 
would have to improve the lab. 
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Figure 7.31 Multicycle control unit 
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Figure 7.41 Complete multicycle control FSM 
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Table 6.3 Condition mnemonics 

 
Table 7.3 ALU Decoder truth table 

 
Table 7.6 Instr Decoder logic for RegSrc and ImmSrc 
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HDL Example 7.3 Decoder 
 

module decoder(input  logic [1:0] Op, 
     input  logic [5:0] Funct, 
     input  logic [3:0] Rd, 
     output logic [1:0] FlagW, 
     output logic      PCS, RegW, MemW, 
     output logic     MemtoReg, ALUSrc, 
     output logic [1:0] ImmSrc, RedSrc, ALUControl); 
 

logic [9:0] controls; 
 logic        Branch, ALUOp; 
  
 //Main Decoder 
 always_comb 
  casex(Op) 
        // Data-processing immediate 

2'b00: if(Funct[5]) controls = 10'b0000101001; 
        // Data-processing register 
    else     controls = 10'b0000001001; 
        // LDR 
   2'b01: if(Funct[0]) controls = 10'b0001111000; 
        // STR 
    else    controls = 10'b1001110100; 
        // B 
   2'b10:     controls = 10'b0110100010; 
        // Unimplemented 
   default:    controls = 10'bx; 
  endcase  
   
 assign {RegSrc,ImmSrc,ALUSrc,MemtoReg,RegW,MemW,Branch,ALUOp}=controls; 
  
 // ALU Decoder 
 always_comb 
 if(ALUOp) begin // which DP Instr 
  case(Funct[4:1]) 
   4'b0100: ALUControl = 2'b00; // ADD 
   4'b0010: ALUControl = 2'b01; // SUB 
   4'b0000: ALUControl = 2'b10; // AND 
   4'b1100: ALUControl = 2'b11; // ORR 
   default: ALUControl = 2'bx;  // unimplemented 
  endcase 
   
  // update flags if S bit is set (C&V only for arith) 
  FlagW[1] = Funct[0]; 
  FlagW[0] = Funct[0]&(ALUControl==2'b00|ALUcontrol==2'b01); 
 end else begin 
  ALUControl = 2'b00; // add for non-DP instructions 
  FlagW      = 2'b00; // don't update Flags 
 end 
  
 // PC Logic 
 assign PCS = ((Rd==4'b1111)&RegW)|Branch; 
endmodule  
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HDL Example 7.4 Conditional Logic
 

module condlogic(input  logic   clk, reset, 
       input  logic [3:0] Cond, 
       input  logic [3:0] ALUFlags, 
       input  logic [1:0] FlagW, 
       input  logic    PCS, RegW, MemW, 
       output logic    PCSrc, RegWrite, MemWrite); 
 
 logic [1:0] FlagWrite; 

logic [3:0] Flags; 
logic       CondEx; 
 
flopenr #(2)flagreg1(clk,reset,FlagWrite[1],ALUFlags[3:2],Flags[3:2]); 
flopenr #(2)flagreg0(clk,reset,FlagWrite[0],ALUFlags[1:0],Flags[1:0]); 
 
//write controls are conditional 
condcheck cc(Cond, Flags, CondEx); 
assign FlagWrite = FlagW & {2{CondEx}}; 
assign RegWrite  = RegW  & CondEx;  
assign MemWrite  = MemW  & CondEx; 
assign PCSrc     = PCS   & CondEx; 

endmodule 
 
module condcheck(input  logic [3:0] Cond, 

     input  logic [3:0] Flags, 
     output logic       CondEx); 

 
 logic neg, zero, carry, overflow, ge; 
 
 assign {neg, zero, carry, overflow} = Flags; 

assign ge = (neg == overflow); 
 
always_comb 
 case(Cond) 

4'b0000: CondEx = zero;   // EQ   
4'b0001: CondEx = ~zero;   // NE 
4'b0010: CondEx = carry;  // CS 
4'b0011: CondEx = ~carry;  // CC 
4'b0100: CondEx = neg;   // MI 
4'b0101: CondEx = ~neg;   // PL 
4'b0110: CondEx = overflow;  // VS  
4'b0111: CondEx = ~overflow;  // VC  
4'b1000: CondEx = carry&~zero; // HI  
4'b1001: CondEx = ~(carry&~zero); // LS  
4'b1010: CondEx = ge;   // GE 
4'b1011: CondEx = ~ge;   // LT 
4'b1100: CondEx = ~zero&ge;  // GT  
4'b1101: CondEx = ~(~zero&ge); // LE  
4'b1110: CondEx = 1'b1;   // Always  
default: CondEx = 1'bx;   // undefined 

endcase 
endmodule

 


