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Introduction 
In this lab, you will learn to write MIPS assembly language programs and test them on a 
PIC32 microcontroller.  You’ll learn about some of the assembler directives necessary to 
write a real program. You’ll also learn to use the PIC development environment to watch 
register values and debug your code. 

First, you will write a simple assembly language program to compute the Fibonacci 
numbers.  Then you will write a more sophisticated program to perform floating point 
addition. 

The basic MIPS assembly language instructions should be familiar to you after reading 
Chapter 6 of the textbook.  Refer to Appendix B at the end of the textbook for a complete 
list of all the available instructions along with descriptions of their functions. 

MIPS Assembly Language Programming for the PIC32 
You will use the same MPLAB development environment for assembly language 
programming that you used for C programming. 

First make sure the software knows which PIC you are working with by selecting 
“PIC32MX675F512H” from the Configure  Select Device menu. Also choose Project 

 Select Language Toolsuite… and confirm that the Micorchip PIC32 C-Compiler 
Toolsuite is selected. 
 
Create a new project named fact_xx, where xx are your initials.  Copy the fact.s assembly 
language file from \\charlie.hmc.edu\Courses\Engineering\E85\Labs\Lab8 to your 
fact_xx directory and add it to your project.  Look at the file and see how it works. 
 
MIPS assembly supports two types of code comments.  A # character will comment out 
any text after it on the same line, and /* block comments */ can be defined that 
span multiple lines.   
 
Every PIC program must contain at least one function, named main.  The .global 
main  instruction tells the compiler that a function named main exists.  Additionally, a 
code label   main:  is placed at the beginning of the function.  Labels can be used as the 
target of jump and branch instructions and can be placed anywhere in your code.   
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Real MIPS assembly language has one idisyncracy called a branch delay slot.  For 
reasons related to the way the first pipelined MIPS processor was built, MIPS executes 
the instruction immediately after each branch or jump.  Unless you have an instruction 
that you want to perform here, you’ll need to put a nop after each branch or jump, as you 
see in the code. 

MPLAB Simulator 
MPLAB includes a good PIC simulator that lets you test your program without actually 
downloading it into hardware.  It behaves essentially identically to the real hardware. 
This is handy because it saves you from having to deal with hardware troubles while 
debugging.  We’ll use the simulator instead of the PIC32 chip in this lab.  Choose 
Debugger  Select Tool  MPLAB SIM to select the simulator rather than the in-circuit 
debugger.   
 
The flow for assembling and testing your code is much like that for the C compiler.  
Choose Build All and check that the build succeeded.  Because you are using the 
simulator rather than the ICD, you don’t need to program the code onto the hardware.  
Instead, choose Debugger  Reset  Processor Reset (F6) to reset the program to the 
start.  You should see the PC at the bottom of the MPLAB IDE window set to 
0xbfc00000. 
 
Choose View  CPU Registers and View  Disassembly Listing.  Increase the size of 
the CPU Registers window and scroll down until you can see the main registers, such as 
a0, ra, s0, t0, and v0.  Look over the disassembly window, which shows how your 
program was translated into machine language and what address in memory holds each 
instruction.   
 
Observe that main begins at address 9D000018, which is not where the PC presently 
points.  By default, the PIC32 assembler inserts a lengthy startup routine into memory 
before your program.  This code initializes the stack pointer, clears memory, and 
performs a number of other specialized jobs before jumping to main.  You don’t have this 
code handy and you wouldn’t want to tediously single step through it anyway.  Instead, 
click on the first line of the disassembly listing with the addi instruction.  Right-click 
and choose Run to Cursor.  You should now see a green arrow pointing to this line, and 
the program counter should read 0x9d000018. 
 
Use Debugger  Step Into (F7) to single-step through the factorial program.  The first 
addi instruction should write the number 4 into $a0.  Check in the CPU registers 
window that this happens.  Step again. The jal instruction should jump to factorial.  
However, the program counter instead increments to 0x9d000020 to execute the nop in 
the branch delay slot first.  Step again and observe the PC change to 0x9d000030 to begin 
factorial.  Continue stepping through the code, watching the disassembly listing, the PC, 
and the CPU registers, and be sure you understand how the program behaves.  
Eventually, you should reach the infinite loop with 0x18 in $v0. 
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Fibonacci Numbers 
Refer to your Lab 6 for information about the Fibonacci numbers. Write an assembly 
language program to calculate the 8th Fibonacci number. To get you started, here is a 
template for the body of the assembly program that you should write: 

main: addi $a0,$0,8 # n = 8 

 addi $s0,$0, 1 # jump-start loop with 

 addi $s1,$0, 0 # fib(-1) and fib(0) 

loop: <add your code here> # <your comments here> 

 . . .  

done: j done # infinite loop 

 add $0, $0, $0 # branch delay slot 

Don’t forget to include all of the other assembler directives that you had in the fact.s 
program.  An easy way to start is to make a copy of the fact.s, rename it to fib.s, and start 
modifying the body.  Don’t forget to add fib.s to a new project and select the MPLAB 
simulator. 

Note that the first line of code places the value 8 into register a0 ($a0).  This is the n 
argument to the fib function.  It is wise to test your program on several different values 
(not just 8). 

The third and fourth lines of code load the values of fib(-1) = 1 and fib(0) = 0 
into $t0 and $t1, respectively.  These can be used to “bootstrap” your loop. 

After looping the number of times specified by the value placed in $a0, your code 
should leave the resulting value of fib(n) in register $v0 and go to done.  The last 
line of code is simply a way of ensuring that your program terminates in a predictable 
manner. 

Fill in the missing lines of code to complete the loop that computes fib(n).  You should be 
able to do this in fewer than 10 lines of code.  Use only the following instructions: add, 
sub, and, or, slt, addi, j, beq, lw, and sw.  Don’t forget to fill the branch delay 
slot with an instruction that does nothing.  Since we aren’t using the nop instruction, try 
something like add $0, $0, $0 instead. You should use comments to include your 
name and the date at the top of the file.  Please add comments after every line of code 
also, explaining clearly what the code does. 

Build your program.  Run it and check the value in $v0.  If it doesn’t match your 
expectations, debug your code.  One good approach is to view the CPU Registers window 
and to single-step through your code, checking at each step that the registers match your 
expectations.  When you find a discrepancy, you’ve located your error. 
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Floating Point Addition 
Next, write a MIPS assembly language function that performs floating-point addition.   

You should be familiar with the IEEE 754 Floating-Point Standard, which is described in 
the text.  Here we will be dealing only with single precision floating-point values, which 
are formatted as in Figure 1 (this is also described in Section 5.3.2 of your book). 

Sign Exponent (8 bits) Fraction (23 bits) 

31 30 29 28 27 26 25 24 23 22 21 20 19 . . . 0 

Figure 1. IEEE 754 single precision floating-point format 
Remember that the exponent is biased by 127, which means that an exponent of zero is 
represented by 127 (01111111).  (The exponent is not encoded using two’s complement.) 

The mantissa is always positive, and the sign bit is kept separately.  Note that the actual 
mantissa is 24 bits long: the first bit is always a 1 and thus does not need to be stored 
explicitly.  This will be important to remember when you write your function! 

There are several details of IEEE 754 that you will not have to worry about in this lab.  
For example, the exponents 00000000 and 11111111 are reserved for special purposes 
that are described in your book (representing zero, denormalized numbers, and NaN’s).  
Your addition function will only need to handle strictly positive numbers, and thus these 
exponents can be ignored. Also, you will not need to handle overflow and underflows. 

To implement floating-point addition in assembly language, there are some MIPS 
instructions you will need to be familiar with.  First, you will need to make use of the 
and instruction to extract the exponent and fraction bits out of the floating-point 
numbers.  This technique is called masking, because it involves the use of a 32-bit 
number that is used as a mask over another number to allow only certain bits of the result 
to be non-zero.  For example, if you want to extract a number that is stored in bits 5-13 of 
a full 32-bit word, you could use the code in Figure 3.  Observe that the hexadecimal 
mask 0x00003FE0 is the binary value 0000 0000 0000 0000 0011 1111 1110 0000, a 
mask with bits 5 through 13 set to 1.  Also, note that the mask label is an address in 
memory.  The lw command is necessary to load the mask value from that memory 
address into a register before it can be used.  A command such as and $t1, $t1, 
mask is illegal because the mask is not a register. 

        .data  

mask:   0x00003FE0 # mask for bits 5-13 

        .text 

        . . . 

xtract: lw $t0, mask 

        and $t1,$t1,$t0 

        srl $t1,$t1,5 
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        . .  

Other instructions that you will need to be familiar with are the shift instructions.  You 
should take careful note of the difference between a logical right shift and an arithmetic 
right shift.  The logical right shift simply shifts the bits right by the specified amount, 
always shifting in zeros from the left.  The arithmetic right shift, however, keeps bit 31 
the same and shifts all the other bits to the right, copying bit 31 into all of the bits vacated 
by the shift.  This allows negative two’s-complement numbers to be shifted right without 
changing their value. There is another shift instruction available in MIPS that you should 
find quite useful: the variable shift.  The instruction srav allows you to perform right 
shifts by a distance specified by the value in a register. As always, you should refer to 
Appendix B in your book for a complete reference on the MIPS instruction set. 

Hand Analysis 
Before implementing floating point addition, refamiliarize yourself with the 
representation of floating point numbers and with carrying out addition by hand by 
answering the following questions.  Give your answers in binary and hexadecimal.  For 
example, 1.0 is written as an IEEE single-precision floating point number as: 

 
1.0 = 0 01111111 00000000000000000000000 = 3F80000016 

 

a) Write 2.0 as an IEEE single-precision floating point number. 

b) Write 3.5 as an IEEE single-precision floating point number. 

c) Write 0.50390625 as an IEEE single-precision floating point number. 

d) Write 65535.6875 as an IEEE single-precision floating point number. 

e) Compute the sum of the numbers from (c) and (d) and express the result in IEEE 
floating point format. Truncate the sum if necessary. 

 

Writing the FP Addition Program 
You can add your floating-point addition function into the fpadd.s file that is provided in 
the \\charlie.hmc.edu\Courses\Engineering\E85\Labs\lab8 folder.  Carefully read the 
comments there, then add your code in the place indicated.  Remember that your code 
should not modify any $s registers because the program calling you expects that $s 
registers will not change across procedure calls.  You should be able to use only $t 
registers to avoid saving and restoring $s registers on the stack. 

Notice that we have provided a number of masks (fmask, emask, etc.) at the top of the 
file for your convenience. 

Your addition function need only handle strictly positive numbers, and need not detect 
overflow or underflow.  Also, you need not perform rounding since it would be 
complicated and because truncation is also a valid option (although less accurate). 

Your code will never actually need to perform a left shift for normalization, because of 
the restriction that it only needs to handle strictly positive numbers.  Convince yourself 
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that this is true before writing your code (think about the properties of the mantissas that 
get added and the properties that follow for the resulting sum). 

Again, it is important to note that the most significant bit of the mantissa is an implied 1.  
After extracting the fraction bits by using masking, your code can use an or instruction 
to place the 1 back into the proper bit of the mantissas before performing addition on 
them.  Having this implied 1 bit in place in the mantissas will make the normalization 
step more straightforward.  Later, when your code reassembles a single floating-point 
value for its final result from a separate mantissa and exponent, you will need to remove 
this implied 1 bit from in front of the mantissa again. 

Since your code will add only strictly positive numbers, the sign bits in the numbers 
being summed can be ignored.  The sign bit of the resulting sum should be set to zero. 

In summary, your algorithm will need to do the following: 

1) Mask and shift down the two exponents. 
2) Mask the two fractions and append leading 1’s to form the mantissas. 
3) Compare the exponents by subtracting the smaller from the larger.  Set the 

exponent of the result to be the larger of the exponents. 
4) Right shift the mantissa of the smaller number by the difference between 

exponents to align the two mantissas. 
5) Sum the mantissas. 
6) Normalize the result.  I.e., if the sum overflows, right shift by 1 and increment 

the exponent by 1. 
7) Round the result (truncation is fine). 
8) Strip the leading 1 off the resulting mantissa, and merge the sign, exponent, 

and fraction bits. 
As a guideline: you should be able to implement the floating-point addition algorithm in 
under 50 lines of code; the solution uses 31 lines. 
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Testing your Program 
Test your program on the following examples: 

1.0 + 1.0 = 2.0 (0x3F800000 + 0x3F800000 = 0x40000000) 

2.0 + 1.0 =  

3.0 + 3.5 =  

0.50390625 + 65535.6875 = 

If your code is not working, don’t panic!  You now have the opportunity to practice 
debugging assembly language code.  Predict the result of each line of code for a known 
(and preferably simple) set of inputs. Step through the code one line at a time.  Check that 
after each step, the results are what you expect they should be.  When the results differ, 
you have found your bug.  Correct your code, restart the simulation, and single step again 
until you verify that the correct answer is now produced. 

What to Turn In 
Provide a hard copy of each of the following in the following order.  Clearly label each 
part by number.  

1. Please indicate how many hours you spent on this lab.  This will not affect your 
grade, but will be helpful for calibrating the workload for next semester’s labs. 

2. Your completed, thoroughly commented fib_xx.s file.  Uncommented or hard to read 
code will lose points. 

3. What value did your program leave in $v0 for fib(8)?  

4. Your answers to the floating-point hand analysis questions. 

5. The code that you inserted into flpadd_xx.s, including your complete function that 
performs floating-point addition. 

6. The results of your four addition tests cases. 

7. EXTRA CREDIT: Add support for negative numbers to your function. This requires 
the following significant modifications, which could take approximately another 30 
lines of code: 

 Extracting the sign bits from the arguments and handling them appropriately 

 Negating the mantissas for negative numbers before adding them. 

 Adding support for doing the proper number of left shifts (which will now be 
needed) in the normalization step 

 Setting the sign bit of the result properly and negating the mantissa of the 
result when needed 

If you do the extra credit, turn in a list of difficult cases that you tested and show that 
the algorithm produced the correct result.  Choose the cases that are most likely to 
stress the algorithm.  Your score on this extra credit assignment can substitute for one 
entire problem set grade. 


