
Page 1 of 5

Introduction
In this lab, you will learn to program a PIC32 microcontroller in C by following a tutorial
and then writing several of your own programs.

The μMudd32 Board
In this lab and the next two, you will be using the μMudd32 board developed by Leo
Altmann and Christian Jolivet at HMC in 2010. The board contains a PIC32MX675F-
512H microcontroller, LEDs, switches, a port for programming the microcontroller, a
row of male header pins for connecting to a breadboard, and many other goodies that
you’ll explore if you take E155.

We will be using the PIC32-series microcontroller because PIC is one of the market-
leading microcontroller vendors, their development tools are fairly good, and because the
PIC32-series of processors is based on the MIPS architecture that we will study later.

Your particular PIC32 microcontroller has 512 KB of Flash memory for programs, 64
KB of static RAM for data, dozens of digital input/output pins, 16 analog input pins, and
oodles of special perhiperals such as counters, comparators, timers, serial ports, and
Ethernet ports. It is rated to operate up to 80 MHz, but runs at 40 MHz on this board. It
costs about $7 in low quantities; a version with less memory is available for $3.25 in
quantities of 10,000.

You will use the In Circuit Debugger (ICD3) module, affectionately known as the hockey
puck, to program your PIC from a PC in the E85 lab. The ICD3 connects to the PC via a
USB cable and to the μMudd32 board via a short RJ-11 cable.

Be sure that the μMudd32 board is plugged into the ProtoBoard. The Vin and GND pins
should be wired to 5V and Ground, respectively. The ICD3 should be connected to the
PC and the board. The protoboard should be turned on. The ICD power and status lights
should be green and the active light should be blue. When you are all done with the lab,
turn off the protoboard.

You’ll be using the DIP switches and LEDs to interact with your program. The four DIP
switches in the lower left corner produce a 1 when the bottom side of the switch is down
and a 0 when the top side is down. There are 10 LEDs on the right side of the board.
The top one indicates that power is ON. The next is always OFF. The remaining 8
display a byte of information, with the least significant bit at the top and the most
significant bit at the bottom.

Digital Design and Computer Architecture
Harris and Harris

Lab 6: C Programming

Page 2 of 5

PIC32 C Compiler Tutorial
PIC microcontrollers are programmed from the Microchip MPLAB Integrated
Development Environment (IDE). The IDE supports programming in both C and
assembly language; you’ll use C in this lab and the next, and assembly language in Lab 8.

In this tutorial, you will learn to write and compile a simple program that uses the DIP
switches, LEDs, and input and output from the MPLAB console. You’ll also learn to
step through a program and debug it if you have errors.

Launch MPLAB IDE from the Start menu. Choose Project New… Create a new
project named lab6tut in your Charlie directory (e.g. H:\e85\lab6_xx). Choose Configure
-> Select Device and pick the PIC32MX675F512H. Choose Project -> Select Language
Toolsuite. Make sure MPLAB PIC32 C-Compiler Toolsuite is active. Then choose
Project -> Build Options… -> Project. In the MPLAB PIC32 C Compiler tab, check “Use
Alternate Settings” and enter -g -mappio-debug. This is necessary to let a program
print messages through the ICD back to the MPLAB console.

Copy lab6tut.c and e85.c from \\charlie.hmc.edu\Courses\Engineering\E85\Labs\Lab6 to
your lab6_xx directory. Choose Project -> Add Files to Project… and add these two C
files to your project. Look over the files and see what they do.

Choose Debugger -> Select Tool -> MPLAB ICD3 to test your program on the PIC32
chip using the ICD3. Then choose Project -> Build All to compile the C program. Look
at the Build tab in the Output window. You should see no warnings and a report that
“BUILD SUCCEEDED.” Choose Debugger -> Program to download your program to
the PIC. You should see a message in the MPLAB ICD3 tab of the Output window
indicating Programming /Verify complete.

If at any point you have trouble communicating with the PIC or the status light on the
puck turns red, try unplugging and replugging the USB cable, then choosing Debugger ->
Reconnect. MPLAB may hang up for a while after this happens. If you have to kill the
program, you may find that your project has been corrupted when you reopen it, and
you’ll have to recreate the project (but not your C file).

Choose View -> Application In/Out to open a console window for input and output from
the program. In the Format section, set Output and Input to Text.

You will be using the DIP switches and LEDs on the μMudd32 board to interact with
your program. The top of the board is the side with the ICD connector.

Choose Debugger -> Run to run the program. In the Input/Output window, you should
see the program print the number read from the switches. It will prompt you to enter a
number. Type your number in the User Input field of the Input/Output window. The
program will display the number from the DIP switches in the least significant nibble of
the LEDs, and the number you entered in the most significant nibble. It will then pause
for 3 seconds (3000 ms), then repeat. Try entering different numbers and changing the
value on the DIP switches. Check that everything works as you expect. The console is
not entirely reliable at printing messages; it will sometimes print part of the message late.
Choose Debugger -> Halt when you are done.

Page 3 of 5

The next step is to learn to use the debugger to trace through your program. Choose
View -> Watch to set some variables to watch. In the box at the top center, enter sw then
click Add Symbol. Do the same for num.

Click the cursor on the initIO() line. Right click and choose Run to Cursor. The
program will start up and run to this first line. Choose Debuggger -> Step Into (F7). You
can watch the program step through the initIO function by repeatedly pressing F7. Do
the same with readSwitches. Check that sw gets the value you expect in the Watch
window. Choose Debugger -> Step Over (F8) to step over the printf statements.
Stepping into them would make no sense because you don’t have the source code to
watch how they work. If you accidentally do step into a library function like printf,
put the cursor on the next line and choose Run to Cursor again. Step over the scanf
statement and enter a value. Check that num gets this value. Step into the writeLEDs
function. Add val to the watch Window. Check that it has the value you expect when
you step into the function. Note that sw and num will indicate Out of Scope because they
are not defined within writeLEDs.

To start the program again, choose Debugger -> Reset -> Processor Reset (F6). Then
step through the program again.

Finally, learn to modify the program. Comment out the line with the delay. Recompile
your code and program it over the ICD. Test it again and observe that there is no delay.

You now know your way around the C compiler and in-circuit debugger. In the next
sections, you can write some programs of your own.

Pocket Hypnotizer
You have been dispatched to the Atacama desert to obtain secret information from a rebel
leader. You’ll have to get past the border guards to reach your destination. For this
mission, you need to build a pocket hypnotizer.

Create a new project called lab6ph_xx. Remember to set the Build Options and choose
the ICD3 as the debugger. Create a new file called lab6ph_xx.c for your program.
Remember to add e85.c to your project and to call initIO() before running the rest of your
program.

Write a program that causes a pattern on the LED bar to zip back and forth. When your
program starts, it should turn on one of the LEDs. Then it should turn off that LED and
turn on the next. Continue until reaching the end of the LED bar, then go back, then
repeat indefinitely. You’ll need to choose a suitable delay between steps to get the
desired effect.

Remember to use Build All, Program, View Application In/Out, and Run to test your
program. If you have difficulties, use the debugger and watch window to step through
your code and compare against your expectations. Tune the delay until it looks
mesmerizingly good. Stare into the blinking lights as you repeat to yourself “I will ace
E85.”

Page 4 of 5

Fibonacci Numbers
Your next goal is to calculate and print the first 16 Fibonacci numbers to the screen.
Recall that each number in the Fibonacci series is the sum of the previous two numbers.
Error! Reference source not found. lists the first few numbers in the series.

n 1 2 3 4 5 6 7 8 9 10 11 …

fib(n) 1 1 2 3 5 8 13 21 34 55 89 …

Table 1. Fibonacci Series

We can also define the fib function for negative values of n. To be consistent with the
definition of the Fibonacci series, what would the following values be?

fib(0) = ____

fib(-1) = ____

These values are useful when writing a loop to compute fib(n) for all non-negative values
of n.

Create a new project called lab6fib_xx. Create a new file called lab6fib_xx.c and write
your program. Remember to add e85.c to your project and to call initIO() before running
the rest of your program. Compute and print the the Fibonacci numbers for n = 1…16.

Number Guessing Game
Your final project is to write a game to guess a random number between 1 and 100. The
game should play something like the one below, with bold indicating user input.
I’m thinking of a number between 1 and 100.

Your guess: 40

Too high. Try again.

Your guess: 20

Too low. Try again.

Your guess: 33

You got it in only 3 guesses!

Call your project lab6guess_xx.

You’ll find the rand() function to be helpful. It returns a pseudorandom integer. You’ll
need to #include <stdlib.h> to use the function.

Unfortunately, it uses the same random number seed each time your program starts,
making the game rather boring to play more than once. The srand() function changes the
random number seed. For extra credit, develop a way to make your game less
predictable.

Page 5 of 5

What to Turn In
Provide a hard copy of each of the following in the following order. Clearly label each
part by number.

1. Please indicate how many hours you spent on this lab. This will be helpful for
calibrating the workload for next time the course is taught

2. Your neatly written, commented lab6ph_xx.c file. Did it work?

3. Your lab6fib_xx.c file. What is the 16th Fibonacci number that it calculates?

4. Your lab6guess_xx.c file. Does it work?

5. What were the most difficult bugs you encountered and how did you fix them?

Hints
If you are having trouble, check for the following common problems:

• Be sure your files are on your Charlie H drive and that there are no spaces or
special characters in the file name.

• Be sure you’ve included e85.c in each of your projects.

• Remember to follow each of the steps below to compile and test a new program:

o Check that the current program is halted

o Build All

o Program

o Run

• If printf or scanf isn’t working correctly, check that:

o The compiler settings should include -g -mappio-debug

o Your program must call initIO

o View Application In/Out and set the format to text

o Even with this, part of the print statements may not display until the next
print is called. This is due to a bug in the Microchip software and isn’t
your fault.

