
 1

Introduction
In this lab you will design a simple digital circuit called a full adder. Along the way, you
will learn to use the Altera field-programmable gate array (FPGA) tools to enter a
schematic, simulate your design, and download your design onto a chip. You will also
build your adder on a breadboard using discrete chips to get a more tactile sense of digital
logic.

After completing the lab, you are required to turn in something from each part. Refer to
the “What to Turn In” section at the end of this handout before beginning the lab.

The computer-aided design (CAD) tools required for this class are installed in the E85 lab
(Parsons B183). If you would like to work from the convenience of your own computer,
see the class website for instructions on installing the tools.

Background: Adders
An adder, not surprisingly, is a circuit whose output is the binary sum of its inputs. Since
adders are needed to perform arithmetic, they are an essential part of any computer. The
full adder will be an integral part of the microprocessor that you design in later labs.

A full adder has three inputs (A, B, Cin) and two outputs (S, Cout), as shown in Figure 1.
Inputs A and B each represent 1-bit binary numbers that are being added, and S represents
a bit of the resulting sum.

A B

S

Cout Cin+

Figure 1. Full adder

Digital Design and Computer Architecture
Harris and Harris

Lab 1: Full Adder

 2

The Cin (carry in) and Cout (carry out) signals are used when adding numbers that are
more than one bit long. To understand how these signals are used, consider how you
would add the binary numbers 101 and 001 by hand:
 1
 101
 + 001
 110

As with decimal addition, you first add the two least significant bits. Since 1+1=10 (in
binary), you place a zero in the least significant bit of the sum and carry the 1. Then you
add the next two bits with the carry, and place a 1 in the second bit of the sum. Finally,
you add the most significant bits (with no carry) and get a 1 in the most significant bit of
the sum.

When a sum is performed using full adders, each adder handles a single column of the
sum. Figure 2 shows how to build a circuit that adds two 3-digit binary numbers using
three full adders. The Cout for each bit is connected to the Cin of the next most significant
bit. Each bit of the 3-bit numbers being added is connected to the appropriate adder’s
inputs and the three sum outputs (S2:0) make up the full 3-bit sum result.

S2

A1 B1

S1

A0 B0

S0

C1 C0

Cout +++

A2 B2

Cin

Figure 2. 3-bit adder

Note that the rightmost Cin input is unnecessary, since there can never be a carry into the
first column of the sum. This would allow us to use a half adder for the first bit of the
sum. A half adder is similar to a full adder, except that it lacks a Cin and is thus simpler
to implement. To save you design time, however, you will only build a full adder in this
lab.

A B

S

Cout +

Figure 3. Half adder

 3

1. Design
A partially completed truth table for a full adder is given in Table 1. The table indicates
the values of the outputs for every possible input, and thus completely specifies the
operation of a full adder. As is common, the inputs are shown in binary numeric order.
The values for S (sum) are given, but the Cout (carry out) column is left blank. Complete
the table by filling in the correct values for Cout so that adders connected as in
Figure 2 will perform valid addition.

Inputs Outputs

Cin B A Cout S

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 1. Partially completed truth table for full adder
From the truth table, we now want to implement our design using logic gates. The sum
output (S) can be produced from the inputs by connecting two 2-input XOR gates as
shown in Figure 4. You should convince yourself that this circuit produces the outputs
for S as given in the table.

Figure 4. Schematic for sum logic

Using only two-input logic gates (AND, OR, XOR) and inverters (NOT), design a
circuit that takes A, B, and Cin as its inputs and produces the Cout output. Try to use
the fewest number of gates possible. Sketch your schematic.

 4

2. Schematic
Now that you know how to produce both the sum (S) and carry out (Cout) outputs using
simple logic gates, you will now construct a working full adder circuit using real
hardware. One way to test your circuit before building it in hardware is to enter the
schematic representation of your logic into a software package. You can then simulate the
circuit and test that it works the way you expect it to. Some software packages are then
capable of programming the schematic into an integrated circuit. This semester we will
be using the Altera Quartus II 9.1p2 Web Edition software for these purposes. The
Quartus software is a powerful and popular commercial suite of applications used by
hardware designers.

First, you will learn how to start a new project. Start the Quartus software from the Start
menu. If asked about the look and feel, choose Quartus II.

In the Getting Started Window, click on Create a New Project. In the New Project
Wizard, set the working directory to a good place in your Charlie home directory. For
example, if your Charlie directory is mapped to the H drive, choose H:\e85\lab1_xx,
where xx are your initials. Name the project lab1_xx. Make sure there are no spaces or
unusual characters in the path or file name; the tools may complain or silently misbehave
if it has trouble with the file name. If prompted about whether to create the directory, say
Yes.

Click Next to go to the Add Files page. You won’t be using preexisting files, so click
Next again to the Family & Device Settings to select a chip. You’ll be using the Altera
DE2 development board, which contains a Cyclone II EP2C35F672C6 FPGA. Set the
family to Cyclone II. Scroll down and select the device from the list. EP2C indicates the
Cyclone II family of chip. The 35-series is a medium-sized chip with 33,216
(approximately 35k) logic elements. F672 indicates a fine-pitch 672-pin ball grid array
package. C6 indicates a commercial-grade part (rated for operating temperatures of 0 –
85 ○C) and 6 is the slowest (and cheapest) speed grade for this part.

Click Next to go to the EDA (Electronic Design Automation) Tool Settings. Set the
Design Entry/Synthesis Tool name to ViewDraw using EDIF (Electronic Design
Interchange Format) and the Simulation tool to Modelsim using Verilog HDL. Click
Next and Finish to create your new project.

The Quartus window will open in a moment. You may wish to maximize the window.
You will see three main panes (and can bring them up from the View Utility Windows
menu if you accidentally close one):

• Project Navigator: Lists the current project’s sources file and the chip in use.

• Tasks: Lists the processes to perform on the source selected in the Sources pane.
For example, we will use this pane later to simulate your completed schematic.

• Messages: Lists the output of current processes, errors, and warning at the bottom
of the screen. Keep an eye on these messages; important warnings appear here.

 5

Figure 5. Quartus II window
We will describe some of the options for using these resources, but we also recommend
exploring these resources on your own to become familiar with Quartus’ capabilities. Use
the Help menu for additional information.

Quartus has a basic and strikingly ugly schematic editor that we will use. It is not
particularly sophisticated because designers today primarily use hardware description
languages (HDLs) instead of schematics. However, understanding schematics is an
important first step to mastering HDLs.

Create a new schematic by choosing File New and selecting Block Diagram /
Schematic File. A new schematic window named Block1.bdf will appear.

First, place your logic gates. Click on the Symbol Tool icon (shaped like an AND gate).
Expand the list of libraries in the upper left of the Symbol window by clicking on the +
icons. Look under primitives logic and choose xor. Click OK, then click twice on the
schematic window to place two xor gates. Leave some room between the gates to draw a
wire later. Press the Esc key or right click and choose Cancel to get out of the placement
mode.

Click on the Symbol Tool again and choose primitives pin input. Place three input
pins on the left side. Leave some space between the pins and the gates so that you can
wire them together later. Then choose an output pin and place it on the right. Double
click on one of the input pins and change its name to A. Leave the default value
unchanged at VCC. Rename the other inputs to B and Cin. Rename the output to S.

 6

Use the Orthogonal Node Tool (that resembles a thin wire) to wire the gates together.
Click and drag to connect the pins to gates and the two gates together. At this point, your
schematic should resemble Figure 4. It’s a good idea to click on the wire between the
two XOR gates and give it a uique name such as n1 or mid in case you need to debug
later.

If you need to make corrections, use the Selection Tool to grab and move gates or wires.
Zoom in and out by using the View menu or holding the Ctrl key while turning the mouse
wheel. Use delete and undo as necessary.

Choose File Save and save your schematic as lab1_xx.bdf.

You are now ready to complete your schematic of the full adder by drawing the logic for
Cout that you designed in Part 1. Draw the necessary logic gates and wires to complete
the circuit. Use the existing input terminals for A, B, and Cin, and add an output terminal
for Cout. The symbols you should use to draw your logic gates are as follows:

Remember, do not add a second set of input ports for A, B, and Cin. Instead, note that you
can connect multiple wires to the same input ports (or you can connect wires to other
wires to create branches).

Select the Files tab in the Project Navigator pane to see a list of files of the project
(presently jut lab1_xx.bdf). If you need to reopen the file later, double-click on it here.

To check your design, click on Compile Design in the Task pane. You’ll see a
compilation report indicating five pins and 2 logic elements. Review the warnings and
errors carefully. You may get the following warnings that are harmless:

• Feature LogicLock only available with subscription.

• Ignored location or region assignments

• Found output pins without load capacitance

• Found invalid Fitter assignments

• Reserve All Unused Pins not specified

If you see other warnings or errors, track down their root cause before they lead you to
grief later.

3. Simulation
One motivation drawing your full adder schematic in Quartus is that you can now use the
software to simulate the operation of the circuit. It is a good idea to verify the correctness
of your design before actually building the circuit in hardware. In this part of the lab, you
will simulate the design using ModelSim.

ModelSim expects a description of a circuit in a hardware description language (HDL)
such as Verilog. To convert your schematic to Verilog, open the schematic and choose
File Create / Update HDL File for Current File. Choose Verilog HDL. Your file
should be written to lab1_xx.v. Watch for and correct any warnings or errors that arise.

 7

Now fire up ModelSim SE 6.6b from the Windows start menu. Maximize the ModelSim
window when it opens. If prompted, you may wish to associate file types with ModelSim
but do not want to use Jumpstart.

Choose File New Project. Name the project lab1_xx and put it in the directory
where you are working (e.g. H:/e85/lab1_xx). Accept the default library name of “work.”
Then click “Add Existing File” and add lab1_dh.v.

You should see lab1_dh.v in the ModelSim project pane. Double-click on it to view it.
The file should list the inputs and outputs and the wires (using default names if you didn’t
name them yourself). It should then have a series of “assign” statements describing the
gates. & indicates AND. | indicates OR. ^ indicates XOR. In future labs you will learn
to write Verilog yourself.

Choose Compile Compile All to compile the Verilog code into a form that ModelSim
can simulate. Watch for and correct errors in the transcript pane. Then choose Simulate

 Start Simulation. Click on Work to expand the library, and choose lab1_dh as your
module to simulate. Uncheck “enable optimization” because it sometimes hides
information that is useful during debugging.

ModelSim will open more panes including sim and Objects that help you select signals
for the waveform viewer. In the sim pane, be sure lab1_xx is selected. In the objects
window, you’ll see all the inputs, outputs, and internal wires. Shift-click to select them
all. Then right-click and choose Add To Wave Selected Signals. A Wave pane
will pop up with the signals.

Now it is time to apply the inputs. In the transcript pane at the bottom, type
force A 0

force B 0

force Cin 0

run 100

This will set all three inputs to 0 and simulate for 100 ns. (Note that Verilog is case-
sensitive; “A” and “a” are different.) You should see all the inputs and outputs at a low
level in the Wave pane. Next, raise A:

force A 1

run 100

You’ll see A rise. If your design is correct, S will also rise.

Continue with the six other patterns of inputs to check your truth table.

If you have errors, you may want to look at the internal nodes to track down the problem.
Fix the schematic, then regenerate the Verilog file. Recompile and restart the simulation
in ModelSim.

If the waveform is not visible, click on the + button in the top right corner of the “wave-
default” pane to the right of the main ModelSim window. Click the “Zoom Full” icon in
the taskbar to see the whole waveform of the simulation results. You can also use the
“Zoom In” and “Zoom Out” icons: . Check and see that the output values (S and

 8

Cout) are correct. If not, go back and fix your schematic and resimulate. When the output
values are correct, you have a working full adder! Choose File Print to print a copy of
your waveforms to turn in. You can choose the start and end times in the bottom right of
the print dialog box.

4. DE2 Board Implementation
Once your design simulates correctly, you may now close Modelsim and return to
Quartus.

Your next goal is to download your circuit onto a DE2 board to test it on the FPGA. In
hardware, particular pins on the FPGA will correspond to the inputs and outputs of your
design. You’ll need to assign the pins so that you can use switches to control the inputs
and LEDs to display the outputs. Altera provides a file describing how the various
circuits on the DE2 board are connected to the FPGA. To use this file, choose
Assignments Import Assignments. Set the file name to
//Charlie.hmc.edu/courses/Engineering/E85/Labs/DE2_pin_assignments.csv

Rename the pins to match the names on the board. Open your schematic. Rename the
inputs from A, B, and Cin to SW[0], SW[1], and SW[2], respectively. Rename the
outputs to LEDR[0] and LEDR[1]. Save your schematic.

In the Tasks pane, recompile the design.

Connect the DE2 board to the computer using a USB cable. Check that the board is
turned on and the red power button is pressed; the blue Power and Good LEDs should
turn on. Choose Tools Programmer. Check that the Hardware Setup is set to USB-
Blaster and the mode to JTAG. The file should be lab1_xx.sof and the
program/configure box should be checked. Click Start to download your design.

You may ignore the large number of warning messages related to the unused pins.

Toggle SW0, SW1, and SW2 through the eight possible patterns. Check that LEDR0 and
LEDR1 display the correct sums!

5. Breadboard Implementation
In the 1970’s and 1980’s, engineers built systems from many small-scale integration
(SSI) chips that each contain a handful of logic gates. They connected the chips together
with wires on a breadboard. This approach gives you more of a visceral feel for logic
gates. Breadboarding remains a valuable skill for testing out circuits before you build
your own printed circuit board.

In this part of the lab, you will implement your design in hardware using 74xx-series
chips, commonly sold in 14-pin dual inline packages (DIPs). Each chip contains a
number of logic gates. The inputs and outputs of the gates can be accessed through the
chip pins, the metal legs on each side of the black plastic package. Section A.2 of Digital
Design and Computer Architecture has vital information about these chips, including the
pinouts and how they should be used.

First, retrieve as many 74xx-series chips as you need to implement your 1-bit full adder.
Recall that each chip contains multiple gates. Wires and wirecutters are also located in

 9

the lab for your use. Build your circuit on the protoboard located next to each computer.
You will likely want to label your circuit, as shown in Figure 6 for the sum logic. The
circuit could have used any of the four XOR gates on the 7486 chip. Label each gate
with the chip you will be using (in this case, the 7486 chip). Label each input and output
with the pin number that you will connect it to. S1, S2, and S3 indicate switches 1, 2, and
3 on the protoboard.

86 86
1

2
3 4

5

6

S1

S2

S3

Figure 6. Example circuit schematic with pinout notations

Section A.7 of Digital Design and Computer Architecture explains how to place your
chips on a breadboard and wire them together.

The protoboards in the lab have internal power supplies. On the top right corner of the
protoboard is a red knob labeled ‘5 V’. It is internally connected to the top row of the
breadboard. The black knob below it is labeled with the GND symbol and is connected to
the row fourth from the top on the protoboard, as indicated by the white adjoining line.

After placing your chips on the protoboard, connect one vertical column to VDD and one
vertical column to GND using wires. Now use short wires to connect power (VDD) and
ground (GND) to your chips.

Use wires to connect the chips according to your 1-bit full adder design. Connect your
inputs (A, B, and Cin) to the logic switches at the bottom of the protoboard (labeled
“LOGIC SWITCHES”). Choose any of the switches, S1 - S8. It doesn’t matter which row
you use. Be sure the black switch just above the input switches is switched up to +5,
indicating they are 5 Volt inputs. Connect the outputs, S, and Cout, to LED’s located in the
“LOGIC INDICATORS” box on the top right of the protoboard. The red LED indicates
that the output is HIGH (1), and the green LED indicates that the output is LOW (0). Be
sure the switch just above the LEDs is switched up to +5 and that the switch below the
LEDs is switched down to CMOS. These indicate which logic levels to use to turn on the
LEDs.

After you have completed your circuit, toggle the inputs according to Table 1 and test
that the outputs function correctly. If not, debug your circuit until it functions correctly.
Sometimes, connections on the breadboard can be loose or finicky. If the circuit is
behaving suspiciously, it is helpful to check voltages with a multimeter and verify that
they match your expectations.

It’s possible to damage chips, especially by shorting an output to power or ground or
another output. If your measurements reveal suspicious behavior, make sure that power
and ground are attached to the chip. Disconnect all wires from the output. Apply known
good inputs and check the output with

 10

When your circuit works, you are all done. Congratulations on completing lab 1!

What to Turn In
You must provide a hard copy of each of the following items. Be sure to label each
section and organize them in the following order. Messy or disorganized labs will lose
points.

1. Please indicate (A) how many hours you spent on this lab and (B) date and time of
completion. This will be helpful for calibrating the workload for next time the course
is taught.

2. Write a few sentences describing the purpose of this lab.

3. Include your completed truth table, including the values in the Cout column. A hand-
written copy is fine.

4. Include the following printouts (you may use the LaserJet in the E85 lab):

• Your completed schematic, including the logic gates for both S and Cout. This can
be produced using the File Print feature in the Schematic Editor.

• Your simulation of the full adder, including all inputs and outputs. This can be
produced using the File Print feature of the ModelSim Simulator.

5. Did your full adder on the DE2 board pass work for all eight possible inputs?

6. Did your full adder on the breadboard pass work for all eight possible inputs?

If you have suggestions for further improvements of this lab, you’re welcome to attach
them on a separate page at the end of your lab.

