| Chapter $5::$ Digital Building Blocks | |
| :---: | :---: | :---: |
| Digital Design and Computer Architecture | |
| David Money Harris and Sarah L. Harris | |
| Copyighte 2007 Elsevier | |

Multibit Adder, also called CPA

- Several types of carry propagate adders (CPAs) are:
- Ripple-carry adders
(slow)
- Carry-lookahead adders
(fast)
- Prefix adders
(faster)
- Carry-lookahead and prefix adders are faster for large adders but require more hardware.

Copyight © 2007 Essevier 5-45>

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage:

Ripple-Carry Adder Delay

- The delay of an N-bit ripple-carry adder is:

Carry-Lookahead Adder

- Compute carry out ($C_{\text {out }}$) for k-bit blocks using generate and propagate signals
- Some definitions:
- A column (bit i) produces a carry out by either generating a carry out or propagating a carry in to the carry out.
- Generate $\left(G_{i}\right)$ and propagate $\left(P_{i}\right)$ signals for each column:
- A column will generate a carry out if A_{i} AND B_{i} are both 1 .

$$
G_{i}=A_{i} B_{i}
$$

- A column will propagate a carry in to the carry out if A_{i} OR B_{i} is 1 .

$$
P_{i}=A_{i}+B_{i}
$$

- The carry out of a column (C_{i}) is:

$$
C_{i}=A_{i} B_{i}+\left(A_{i}+B_{i}\right) C_{i-1}=G_{i}+P_{i} C_{i-1}
$$

Carry-Lookahead Addition

- Step 1: compute generate (G) and propagate (P) signals for columns (single bits)
- Step 2: compute G and P for k-bit blocks
- Step 3: $C_{i n}$ propagates through each k-bit propagate/generate block

Carry-Lookahead Adder

- For example, we can calculate generate and propagate signals for a 4-bit block ($G_{3: 0}$ and $P_{3: 0}$) :
- A 4-bit block will generate a carry out if column 3 generates a carry $\left(G_{3}\right)$ or if column 3 propagates a carry $\left(P_{3}\right)$ that was generated or propagated in a previous column as described by the following equation:

$$
G_{3: 0}=G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}\right)\right.
$$

- A 4-bit block will propagate a carry in to the carry out if all of the columns propagate the carry:

$$
\boldsymbol{P}_{3: 0}=\boldsymbol{P}_{3} \boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{1}} \boldsymbol{P}_{\mathbf{0}}
$$

- The carry out of the 4 -bit block $\left(C_{i}\right)$ is:

$$
C_{i}=G_{i: j}+P_{i: j} C_{i-1}
$$

Carry-Lookahead Adder Delay

- Delay of an N-bit carry-lookahead adder with k-bit blocks:
$t_{C L A}=t_{p g}+t_{p g_{-} \text {block }}+(N / k-1) t_{\mathrm{AND}_{-} \mathrm{OR}}+k t_{F A}$
where
- $t_{p g}$: delay of the column generate and propagate gates
- $t_{\text {pg_bock }}$: delay of the block generate and propagate gates
- $t_{\text {AND_or }}$: delay from $C_{\text {in }}$ to $C_{\text {out }}$ of the final AND/OR gate in the k-bit CLA block
- An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for $N>16$

Prefix Adder

- Computes the carry in $\left(C_{i-1}\right)$ for each of the columns as fast as possible and then computes the sum:

$$
S_{i}=\left(A_{i} \oplus B_{i}\right) \oplus C_{i}
$$

- Computes G and P for 1-bit, then 2-bit blocks, then 4-bit blocks, then 8 -bit blocks, etc. until the carry in (generate signal) is known for each column
- Has $\log _{2} N$ stages

Prefix Adder

- A carry in is produced by being either generated in a column or propagated from a previous column.
- Define column -1 to hold C_{in}, so

$$
G_{-1}=C_{\text {in }}, P_{-1}=0
$$

- Then, the carry in to column $i=$ the carry out of column $i-1$:

$$
C_{i-1}=G_{i-1: 1}
$$

$G_{i-1:-1}$ is the generate signal spanning columns $i-1$ to -1 . There will be a carry out of column $i-1\left(C_{i-1}\right)$ if the block spanning columns $i-1$ through -1 generates a carry.

- Thus, we can rewrite the sum equation as:

$$
S_{i}=\left(A_{i} \oplus B_{i}\right) \oplus G_{i-1:-1}
$$

- Goal: Quickly compute $\mathrm{G}_{0:-1}, \mathrm{G}_{1:-1}, \mathrm{G}_{2:-1}, \mathrm{G}_{3:-1}, \mathrm{G}_{4:-1}, \mathrm{G}_{5:-1}$, copyight 2007 E(SThenese are called the prefixes)

Prefix Adder

- The generate and propagate signals for a block spanning bits $i: j$ are:

$$
\begin{aligned}
& G_{i: j}=G_{i: k}+P_{i: k} G_{k-1: j} \\
& P_{i: j}=P_{i: k} P_{k-1: j}
\end{aligned}
$$

- In words, these prefixes describe that:
- A block will generate a carry if the upper part (i:k) generates a carry or if the upper part propagates a carry generated in the lower part (k 1:j)
- A block will propagate a carry if both the upper and lower parts propagate the carry.

Prefix Adder Delay

- The delay of an N-bit prefix adder is:
$t_{P A}=t_{p g}+\log _{2} N\left(t_{p g _ \text {prefix }}\right)+t_{\mathrm{XOR}}$
where
- $t_{p g}$ is the delay of the column generate and propagate gates (AND or ${ }^{\rho} \mathrm{OR}$ gate)
- $t_{p g _ \text {prefix }}$ is the delay of the black prefix cell (AND-OR gate)

Adder Delay Comparisons

- Compare the delay of 32-bit ripple-carry, carry-lookahead, and prefix adders. The carry-lookahead adder has 4-bit blocks. Assume that each two-input gate delay is 100 ps and the full adder delay is 300 ps .

Arithmetic Logic Unit (ALU)

Copyight © 2007 Essevier

$\mathbf{F}_{2: 0}$	Function
000	A \& B
001	$\mathrm{~A} \mid \mathrm{B}$
010	$\mathrm{~A}+\mathrm{B}$
011	not used
100	A \& ~B
101	$\mathrm{~A} \mid \sim \mathrm{B}$
110	$\mathrm{~A}-\mathrm{B}$
111	SLT

5. 2227

Set Less Than (SLT) Example

Copyighte 2007 Elsevier

- Configure a 32-bit ALU for the set if less than (SLT) operation Suppose $A=25$ and $B=32$

Shifters

- Logical shifter: shifts value to left or right and fills empty spaces with 0's
- Ex: $11001 \gg 2=$
- Ex: $11001 \ll 2=$
- Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb).
- Ex: $11001 \ggg 2=$
- Ex: $11001 \lll 2=$
- Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end
- Ex: 11001 ROR 2
- Ex: 11001 ROL $2=$

Copyright 2007 EIsevier

Numbers with Fractions

- Two common notations
- Fixed-point:
the binary point is fixed
- Floating-point:
the binary point floats to the right of the most significant 1

Fixed-Point Numbers

- Fixed-point representation of 6.75 using 4 integer bits and 4 fraction bits:

$$
\begin{aligned}
& 01101100 \\
& 0110.1100 \\
& 2^{2}+2^{1}+2^{-1}+2^{-2}=6.75
\end{aligned}
$$

- The binary point is not a part of the representation but is implied.
- The number of integer and fraction bits must be agreed upon by those generating and those reading the number.
Copyight © 2007 Essevier \qquad End
- Ex: Represent 7.5_{10} using an 8 -bit binary representation with 4 integer bits and 4 fraction bits.

Signed Fixed-Point Numbers

- As with integers, negative fractional numbers can be

Floating-Point Numbers

- The binary point floats to the right of the most significant 1. represented two ways:
- Similar to decimal scientific notation.
- For example, write 273_{10} in scientific notation:

$$
273=2.73 \times 10^{2}
$$

- In general, a number is written in scientific notation as:

Represent -7.5_{10} using an 8 -bit binary representation with 4 integer bits and 4 fraction bits.

- Sign/magnitude:
- Two's complement

1. +7.5 :
2. Invert bits:
3. Add 1 to lsb \qquad 1

$$
\pm \mathbf{M} \times \mathbf{B}^{\mathbf{E}}
$$

Where,

- $\mathbf{M}=$ mantiss
- $\mathbf{B}=$ base
- $\mathbf{E}=$ exponent
- In the example, $\mathrm{M}=2.73, \mathrm{~B}=10$, and $\mathrm{E}=2$

Floating-Point Representation 1

- Convert the decimal number to binary (don't skip this!): $228_{10}=11100100_{2}$
- Then write the number in "binary scientific notation":
$11100100_{2}=1.11001_{2} \times 2^{7}$
- Fill in each field of the 32 -bit number:
- The sign bit is positive (0)
- The 8 exponent bits represent the value 7
- The remaining 23 bits are the mantissa
1 bit $\quad 8$ bits \qquad 23 bits

| 0 | 00000111 |
| :--- | :--- | 1110010000000000000000

Sign Exponent
Mantissa
\qquad

Copyighte 2007 Elsevier

Floating-Point Representation 2

- Note: the first bit of the mantissa is always 1 :

$$
-228_{10}=11100100_{2}=1.11001 \times 2^{7}
$$

- Thus, storing the most significant 1 , also called the implicit leading 1 , is redundant information.
- Instead, store just the fraction bits in the 23-bit field. The leading 1 is implied.

Floating-Point Representation 3

- Biased exponent: bias $=127\left(01111111_{2}\right)$
- Biased exponent $=$ bias + exponent
- Exponent of 7 is stored as:

$$
127+7=134=0 \times 10000110_{2}
$$

- The IEEE 754 32-bit floating-point representation of 228_{10}

1 bit	8 bits	23 bits
0	10000110	11001000000000000000000
Sign	Biased Exponent	Fraction

- In hexadecimal: 0×43640000

Copyight © 2007 Elsevier

Floating-Point Example

- Write the value -58.25_{10} using the IEEE 754 32-bit floatingpoint standard.
- First, convert the decimal number to binary:

$$
-58.25_{10}=
$$

- Next, fill in each field in the 32-bit number:
- Sign bit:
- 8 exponent bits:
- 23 fraction bits

1 bit 8 bits 23 bits

Sign Exponent
Fraction

- In hexadecimal: 0xC2690000

Copyighte 2007 Elsevier

Floating-Point Numbers: Special Cases

- The IEEE 754 standard includes special cases for numbers that are difficult to represent, such as 0 because it lacks an implicit leading 1.

Number	Sign	Exponent	Fraction
0	X	00000000	00000000000000000000000
∞	0	111111111	00000000000000000000000
$-\infty$	1	111111111	00000000000000000000000
NaN	X	11111111	non-zero

NaN is used for numbers that don't exist, such as $\mathrm{V}-1$ or $\log (-5)$.
Copyighte © 2007 Elsevier
5.<42>

Floating-Point Numbers: Rounding

- Overflow: number is too large to be represented
- Underflow: number is too small to be represented
- Rounding modes:
- Down
- Up
- Toward zero
- To nearest
- Example: round 1.100101 (1.578125) so that it uses only 3 fraction bits.
- Down: 1.100
- Up:
1.101
- Toward zero: 1.100
- To nearest: $\quad 1.101(1.625$ is closer to 1.578125 than 1.5

Floating-Point Addition	
1.	Extract exponent and fraction bits
2.	Prepend leading 1 to form mantissa
3.	Compare exponents
4.	Shift smaller mantissa if necessary
5.	Add mantissas
6.	Normalize mantissa and adjust exponent if necessary
7.	Round result
8. Assemble exponent and fraction back into floating-point	
format	
copyrighe 2007 Elsevier	

Floating-Point Addition: Example

3. Compare exponents
$127-128=-1$, so shift N1 right by 1 bit
4. Shift smaller mantissa if necessary
shift N1's mantissa: $1.1 \gg 1=0.11\left(\times 2^{1}\right)$
5. Add mantissas
0.11×2^{1}
$\frac{+1.101 \times 2^{1}}{10.011 \times 2^{1}}$
10.011×2^{1}

Floating-Point Addition: Example

6. Normalize mantissa and adjust exponent if necessary $10.011 \times 2^{1}=1.0011 \times 2^{2}$
7. Round result
No need (fits in 23 bits)
8. Assemble exponent and fraction back into floating-point format
$\mathrm{S}=0, \mathrm{E}=2+127=129=10000001_{2}, \mathrm{~F}=001100$..

1 bit	8 bits 23 bits	
0	10000001	00110000000000000000000
Sign	Exponent	Fraction

Written in hexadecimal: 0x40980000

[^0]
Shift Register

- Shift a new value in on each clock edge
- Shift a value out on each clock edge
- Serial-to-parallel converter: converts serial input $\left(S_{\text {in }}\right)$ to parallel output ($Q_{0: N-1}$)

Symbol:

Implementation:

[^1]

Counters

- Increments on each clock edge.
- Used to cycle through numbers. For example, - 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Example uses:
- Digital clock displays
- Program counter: keeps track of current instruction executing

Symbol Implementation

Copyight 02007 Elsevier

Shift Register with Parallel Load

- When Load $=1$, acts as a normal N-bit register
- When Load $=0$, acts as a shift register
- Now can act as a serial-to-parallel converter $\left(\mathrm{S}_{\text {in }}\right.$ to $\left.Q_{0: N-1}\right)$ or a parallel-to-serial converter ($D_{0: N-1}$ to $S_{\text {out }}$)

Memory Arrays

- Efficiently store large amounts of data
- Three common types:
- Dynamic random access memory (DRAM)
- Static random access memory (SRAM)
- Read only memory (ROM)
- An M-bit data value can be read or written at each unique N bit address.

Memory Arrays

- Two-dimensional array of bit cells
- Each bit cell stores one bit
- An array with N address bits and M data bits:
- 2^{N} rows and M columns
- Depth: number of rows (number of words)
- Width: number of columns (size of word)
- Array size: depth \times width $=2^{N} \times M$

Copyight 2007 Elsevier

RAM: Random Access Memory

- Volatile: loses its data when the power is turned off
- Read and written quickly
- Main memory in your computer is RAM (DRAM)

Historically called random access memory because any data word can be accessed as easily as any other (in contrast to sequential access memories such as a tape recorder)

ROM: Read Only Memory

- Nonvolatile: retains data when power is turned off
- Read quickly, but writing is impossible or slow
- Flash memory in cameras, thumb drives, and digital cameras are all ROMs

Historically called read only memory because ROMs were written at manufacturing time or by burning fuses. Once ROM was configured, it could not be written again. This is no longer the case for Flash memory and other types of ROMs.

Types of RAM

- Two main types of RAM:
- Dynamic random access memory (DRAM)
- Static random access memory (SRAM)
- Differ in how they store data:
- DRAM uses a capacitor
- SRAM uses cross-coupled inverters

DRAM

- Data bits stored on a capacitor
- Invented DRAM in 1966 at IBM
- Others were skeptical that the idea would work
- By the mid-1970's DRAM was in virtually all computers

Example: Logic with ROMs

- Implement the following logic functions using a $2^{2} \times 3$-bit ROM:

Example: Logic with ROMs

- Implement the following logic functions using a $2^{2} \times 3$-bit ROM:

Logic with Memory Arrays

- Implement the following logic functions using a $2^{2} \times 3$-bit memory array:
- $X=A B$

Copyight © 2007 Elsevier $\underset{5-75>}{Z}$ EDEVER

Logic with Any Memory Array

$$
\operatorname{Data}_{2}=A_{1} \oplus A_{0}
$$

$$
\operatorname{Data}_{1}=\overline{A_{1}}+A_{0}
$$

Copyighte 2007 Elsevier

$$
\operatorname{Data}_{0}=\overline{A_{1}} \overline{A_{0}}
$$

Logic with Memory Arrays

- Called lookup tables (LUTs): look up output at each input combination (address)

Multi-ported Memories

- Port: address/data pair
- 3-ported memory
- 2 read ports (A1/RD1, A2/RD2)
- 1 write port (A3/WD3, WE3 enables writing)
- Small multi-ported memories are called register files

Copyight© 2007 Elsevier

PLAs

- $\mathrm{X}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}$
- $\mathrm{Y}=\mathrm{A} \overline{\mathrm{B}}$

[^2]

FPGAs: Field Programmable Gate Arrays

- Composed of:
- LEs (Logic Elements) or CLBs (Configurable Logic Glocks) - perform logic
- IOBs (Input/output blocks)
- interface with outside world
- Programmable interconnection:
- connect CLBs and IOBs
- Some FPGAs include other building blocks such as multipliers and RAMs

Altera Cyclone II Logic Elements

- Logic Array contains Logic Elements (LEs) with
- LUT (lookup table): perform combinational function of 4 variables
- Flip-flops: hold one bit of state, enable, async \& sync reset
- Multiplexers: route information to LUT and flip-flop

Other Cyclone II Features

- 18×18-bit multipliers
- 4 Kb memories
- Clock generation with phase-locked loops (PLLs)
- Configurable I/O pins

Cyclone II Capacities

Feature	EP2C5 (2)	EP2C8 (2)	EP2C15 (1)	EP2C20 (2)	EP2C35	EP2C50	EP2C70
LEs	4,608	8,256	14,448	18,752	33,216	50,528	68,416
M4K RAM blocks (4 Kbits plus 512 parity bits	26	36	52	52	105	129	250
Total RAM bits	119,808	165,888	239,616	239,616	483,840	594,432	$\begin{gathered} 1,152,00 \\ 0 \end{gathered}$
Embedded multipliers (3)	13	18	26	26	35	86	150
PLLs	2	2	4	4	4	4	4
attera.com							

FPGA Design Flow

- A CAD tool (such as Altera's Quartus or Xilinx's Project Navigator) is used to design and implement a digital system. It is usually an iterative process.
- The user enters the design using schematic entry or an HDL.
- The user simulates the design.
- A synthesis tool converts the code into hardware and maps it onto the FPGA.
- The user uses the CAD tool to download the configuration onto the FPGA
- This configures the CLBs and the connections between them and the IOBs.

CLBs: Configurable Logic Blocks

- Composed of:
- LUTs (lookup tables): perform combinational logic
- Flip-flops: perform sequential functions
- Multiplexers: connect LUTs and flip-flops

Xilinx Spartan CLB

- The Spartan CLB has:
- 3 LUTs:
- F-LUT (2^{4} x 1-bit LUT)
- G-LUT ($2^{4} \times 1$-bit LUT)
- H-LUT ($2^{3} \times 1$-bit LUT)
- 2 registered outputs:
- $X Q$
- YQ
- 2 combinational outputs:
- X
- Y

[^0]: Copyight © 2007 Elsevier

[^1]: Copyight © 2007 Elsevie

[^2]: Copyighte 2007 Elsevier

