| Chapter 2 :: Combinational Logic Design | |
| :---: | :---: | :---: |
| Digital Design and Computer Architecture | |
| David Money Harris and Sarah L. Harris | |
| Copyighte 2007 Elsevier | |

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Copyighte 2007 Elsevier

Circuits

- Nodes
- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- Circuit elements
- E1, E2, E3
- Each circuit element is a circuit

Rules of Combinational Composition

- Every circuit element is itself combinational
- Every node of the circuit is either designated as an input to the circuit or connects to exactly one output terminal of a circuit element
- The circuit contains no cyclic paths: every path through the circuit visits each circuit node at most once
- Example:

Copyight 02007 Elsevier

Some Definitions

- Complement: variable with a bar over it $\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement $A, \bar{A}, B, \bar{B}, C, \bar{C}$
- Implicant: product of literals $A B \bar{C}, \bar{A} C, B C$
- Minterm: product that includes all input variables $A B \overline{C,} A \bar{B} \bar{C}, A B C$
- Maxterm: sum that includes all input variables $(A+\bar{B}+C),(\bar{A}+\bar{B}+\bar{C}),(\bar{A}+B+C)$

Copyighte 2007 Elsevier

Sum-of-Products (SOP) Form

- All Boolean equations can be written in SOP form
- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- The function is formed by ORing the minterms for which the output is TRUE
- Thus, a sum (OR) of products (AND terms)

	A	B	Y	minterm
	0	0	0	$\overline{\mathrm{A}} \overline{\mathrm{B}}$
	0	1	1	A B
	1	0	0	A \bar{B}
	1	1	1	A B
Copprighte 2007 Essevier	$Y=\mathrm{F}(A, B)=$			

Boolean Equations Example

- You are going to the cafeteria for lunch
- You won't eat lunch (E)
- If it's not open $\overline{(\bar{O})}$ or
- If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

O	C	E
0	0	
0	1	
1	0	
1	1	

$E=$
$-$
11
Copyight $\begin{gathered}2007 \text { Elsevier }\end{gathered}$
2-40>

T5: Complement Theorem

- $\mathrm{B} \cdot \overline{\mathrm{B}}=$
- $\mathrm{B}+\overline{\mathrm{B}}=$

Boolean Theorems: Summary					
	Theorem		Dual	Name	
T1	$B \cdot 1=B$	T1 ${ }^{\prime}$	$B+0=B$	Identity	
T2	$B \cdot 0=0$	T2'	$B+1=1$	Null Element	
T3	$B \cdot B=B$	T3'	$B+B=B$	Idempotency	
T4		$\overline{\bar{B}}=B$		Involution	
T5	$B \cdot \bar{B}=0$	T5'	$B+\bar{B}=1$	Complements	

Simplifying Boolean Expressions: Example 1
Simplifying Boolean Expressions: Example 2

- $Y=\overline{A B}+A B$
- $Y=A(A B+A B C)$

2-200 5ach

Bubble Pushing

- Backward:
- Body changes
- Adds bubbles to inputs

- Forward:
- Body changes
- Adds bubble to output

Copyight © 2007 Essevier
2-222>

Contention: X

- Contention: circuit tries to drive the output to 1 and 0
- Actual value may be somewhere in between
- Could be a legal 0 , a legal 1 , or in the forbidden zone
- Might change with voltage, temperature, time, noise
- Often causes excessive power dissipation

- Contention usually indicates a bug
- Fix it unless you are sure you know what you are doing.
- Warning: X is used for "don’t care" and contention - look at the context to tell them apart

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0,1 , or somewhere in between
- A voltmeter won't indicate whether a node is floating

> Tristate Buffer

$$
\begin{array}{cc|c}
E & A & Y \\
\hline 0 & 0 & Z \\
0 & 1 & Z \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

K-map Definitions

- Complement: variable with a bar over it $\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement A, A, B, B, C, C
- Implicant: product of literals $A B \bar{C}, \bar{A} C, B C$
- Prime implicant: implicant corresponding to the largest circle in a K-map

K-map Rules

Propagation \& Contamination Delay

- Delay is caused by
- Capacitance and resistance in a circuit
- Speed of light limitation
- Reasons why $t_{p d}$ and $t_{c d}$ may be different:
- Different rising and falling delays
- Multiple inputs and outputs, some of which are faster than others
- Circuits slow down when hot and speed up when cold

Glitches

- When a single input change causes multiple output changes

Glitch Example (cont.)

