
1

Copyright © 2007 Elsevier 8-<1>

Chapter 8 :: Memory Systems

Digital Design and Computer Architecture
David Money Harris and Sarah L. Harris

Copyright © 2007 Elsevier 8-<2>

Chapter 8 :: Topics

• Introduction
• Memory System Performance Analysis
• Caches
• Virtual Memory
• Memory-Mapped I/O
• Summary

Copyright © 2007 Elsevier 8-<3>

Introduction

• Computer performance depends on:
– Processor performance
– Memory system performance

Memory Interface

Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLKCLK

Copyright © 2007 Elsevier 8-<4>

Introduction

• Up until now, assumed memory could be accessed
in 1 clock cycle

• But that hasn’t been true since the 1980’s

2

Copyright © 2007 Elsevier 8-<5>

Memory System Challenge

• Make memory system appear as fast as processor
• Use a hierarchy of memories
• Ideal memory:

– Fast
– Cheap (inexpensive)
– Large (capacity)

But we can only choose two!

Copyright © 2007 Elsevier 8-<6>

Memory Hierarchy

Cache

Main Memory

Virtual Memory

Size

Speed

Technology cost / GB Access time

SRAM ~ $10,000 ~ 1 ns

DRAM ~ $100 ~ 100 ns

Hard Disk ~ $1 ~ 10,000,000 ns

Copyright © 2007 Elsevier 8-<7>

Locality

• Exploit locality to make memory accesses fast
• Temporal Locality:

– Locality in time (e.g., if looked at a Web page recently, likely to
look at it again soon)

– If used data recently, likely to use it again soon
– How to exploit: keep recently accessed data in higher levels of

memory hierarchy

• Spatial Locality:
– Locality in space (e.g., if read one page of book recently, likely to

read nearby pages soon)
– If used data recently, likely to use nearby data soon
– How to exploit: when access data, bring nearby data into higher

levels of memory hierarchy too

Copyright © 2007 Elsevier 8-<8>

Memory Performance

• Hit: is found in that level of memory hierarchy
• Miss: is not found (must go to next level)

Hit Rate = # hits / # memory accesses
= 1 – Miss Rate

Miss Rate = # misses / # memory accesses
= 1 – Hit Rate

• Average memory access time (AMAT): average time it
takes for processor to access data

AMAT = tcache + MRcache[tMM + MRMM(tVM)]

3

Copyright © 2007 Elsevier 8-<9>

Memory Performance Example 1

• A program has 2,000 load and store instructions
• 1,250 of these data values found in cache
• The rest are supplied by other levels of memory hierarchy
• What are the miss and hit rates for the cache?

Copyright © 2007 Elsevier 8-<10>

Memory Performance Example 1

• A program has 2,000 load and store instructions
• 1,250 of these data values found in cache
• The rest are supplied by other levels of memory hierarchy
• What are the miss and hit rates for the cache?

Hit Rate = 1250/2000 = 0.625
Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Copyright © 2007 Elsevier 8-<11>

Memory Performance Example 2

• Suppose processor has 2 levels of hierarchy: cache and main
memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT of the program from Example 1?

Copyright © 2007 Elsevier 8-<12>

Memory Performance Example 2

• Suppose processor has 2 levels of hierarchy: cache and main
memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT of the program from Example 1

when using this memory system?

AMAT = tcache + MRcache(tMM)
= [1 + 0.375(100)] cycles
= 38.5 cycles

4

Copyright © 2007 Elsevier 8-<13>

Gene Amdahl, 1922 -

• Amdahl’s Law: the effort
spent on increasing the
performance of a subsystem
is wasted unless the
subsystem affects a large
percentage of the overall
performance

• Cofounded three companies,
including one called Amdahl
Corporation in 1970

Copyright © 2007 Elsevier 8-<14>

Cache

A safe place to hide things

• Highest level in memory hierarchy
• Fast (typically ~ 1 cycle access time)
• Ideally supplies most of the data to the processor
• Usually holds most recently accessed data

Copyright © 2007 Elsevier 8-<15>

Cache Design Questions

• What data is held in the cache?
• How is data found?
• What data is replaced?

We’ll focus on data loads, but stores follow same principles

Copyright © 2007 Elsevier 8-<16>

What data is held in the cache?

• Ideally, cache anticipates data needed by
processor and holds it in cache

• But impossible to predict future
• So, use past to predict future – temporal and

spatial locality:
– Temporal locality: if processor accesses data not held

in cache, copy data from lower level of hierarchy into
cache. Next time, data is available in cache.

– Spatial locality: copy neighboring data into cache
too. Block size = number of bytes copied into cache at
once.

5

Copyright © 2007 Elsevier 8-<17>

Cache Terminology

• Capacity (C):
– the number of data bits a cache stores

• Block size (b):
– bits of data brought into cache at once

• Number of blocks (B = C/b):
– number of blocks in cache: B = C/b

• Degree of associativity (N):
– number of blocks in a set

• Number of sets (S = B/N):
– each memory address maps to exactly one cache set

Copyright © 2007 Elsevier 8-<18>

How is data found?

• Cache organized into S sets
• Each memory address maps to exactly one set
• Caches categorized by number of blocks in a set:

– Direct mapped: 1 block per set
– N-way set associative: N blocks per set
– Fully associative: all cache blocks are in a single set

• Examine each organization for a cache with:
– Capacity (C = 8 words)
– Block size (b = 1 word)
– So, number of blocks (B = 8)

Copyright © 2007 Elsevier 8-<19>

Direct Mapped Cache

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)

Copyright © 2007 Elsevier 8-<20>

Direct Mapped Cache Hardware

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

6

Copyright © 2007 Elsevier 8-<21>

Direct Mapped Cache Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate =

Copyright © 2007 Elsevier 8-<22>

Direct Mapped Cache Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1

mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 20%

Temporal Locality
Compulsory Misses

Copyright © 2007 Elsevier 8-<23>

Direct Mapped Cache: Conflict

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Copyright © 2007 Elsevier 8-<24>

Direct Mapped Cache: Conflict

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses

7

Copyright © 2007 Elsevier 8-<25>

N-Way Set Associative Cache

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

Copyright © 2007 Elsevier 8-<26>

N-Way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

Way 1 Way 0

Copyright © 2007 Elsevier 8-<27>

N-way Set Associative Performance

MIPS assembly code

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, -1
j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = 2/10
= 20%

Associativity
reduces conflict misses

Copyright © 2007 Elsevier 8-<28>

Fully Associative Cache

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

No conflict misses
Expensive to build

8

Copyright © 2007 Elsevier 8-<29>

Spatial Locality?

• Increase block size:
– Block size, b = 4 words
– C = 8 words
– Direct mapped (1 block per set)
– Number of blocks, B = C/b = 8/4 = 2

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Copyright © 2007 Elsevier 8-<30>

Cache with Larger Block Size

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Copyright © 2007 Elsevier 8-<31>

Direct Mapped Cache Performance

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Copyright © 2007 Elsevier 8-<32>

Direct Mapped Cache Performance

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate = 1/15
= 6.67%

Larger blocks
reduce compulsory misses
through spatial locality

9

Copyright © 2007 Elsevier 8-<33>

Cache Organization Recap

• Capacity: C
• Block size: b
• Number of blocks in cache: B = C/b
• Number of blocks in a set: N
• Number of Sets: S = B/N

1BFully Associative

B / N1 < N < BN-Way Set Associative

B1Direct Mapped

Number of Sets
(S = B/N)

Number of Ways
(N)Organization

Copyright © 2007 Elsevier 8-<34>

Capacity Misses

• Cache isn’t big enough to hold all data of interest at one time
• If the cache is full and program tries to access data X that is not in

cache, cache must evict data Y to make room for X
• Capacity miss occurs if program then tries to access Y again
• X will be placed in a particular set based on its address
• In a direct mapped cache, there is only one place to put X
• In an associative cache, there are multiple ways where X could go in

the set.
• How to choose Y to minimize chance of needing it again?
• Least recently used (LRU) replacement: the least recently used

block in a set is evicted when the cache is full.

Copyright © 2007 Elsevier 8-<35>

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV DataTagVU

DataTagV DataTagVU

(a)

(b)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

Set Number
3 (11)
2 (10)
1 (01)
0 (00)

Copyright © 2007 Elsevier 8-<36>

LRU Replacement

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

10

Copyright © 2007 Elsevier 8-<37>

Caching Summary

• What data is held in the cache?
– Recently used data (temporal locality)
– Nearby data (spatial locality, with larger block sizes)

• How is data found?
– Set is determined by address of data
– Block within set also determined by address of data
– In associative caches, data could be in one of several ways

• What data is replaced?
– Least-recently used way in the set

Copyright © 2007 Elsevier 8-<38>

Miss Rate Data

Bigger caches reduce
capacity misses

Greater associativity reduces
conflict misses

Adapted from Patterson & Hennessy, Computer Architecture: A
Quantitative Approach

Copyright © 2007 Elsevier 8-<39>

Miss Rate Data

Bigger blocks reduce compulsory misses
Bigger blocks increase conflict misses Copyright © 2007 Elsevier 8-<40>

Multilevel Caches

• Larger caches have lower miss rates
• But also have longer access times
• Expand the memory hierarchy to multiple levels

of caches
• Level 1: small and fast (e.g. 16 KB, 1 cycle)
• Level 2: larger and slower (e.g. 256 KB, 2-6

cycles)
• Even more levels are possible

11

Copyright © 2007 Elsevier 8-<41>

Intel Pentium III Die

Copyright © 2007 Elsevier 8-<42>

Virtual Memory

• Gives the illusion of a bigger memory without the high
cost of DRAM

• Each program uses virtual addresses
– The entire virtual address space is stored on a hard disk, but

DRAM acts as a cache for the most commonly accessed parts
– These virtual addresses are translated by the CPU into physical

addresses in DRAM. If the data is not in DRAM, it is fetched from
the hard disk.

• Each program can have its own virtual to physical mapping
– Two programs can use the same virtual address for different data
– Programs don’t need to be aware that other ones are running
– One program (or virus) can’t corrupt the memory used by another
– This is called memory protection

Copyright © 2007 Elsevier 8-<43>

The Memory Hierarchy

Cache

Main Memory

Virtual Memory

Capacity

S
peed

Technology cost / GB Access time

SRAM ~ $10,000 ~ 1 ns

DRAM ~ $100 ~ 100 ns

Hard Disk ~ $1 ~ 10,000,000 ns

• Physical Memory: DRAM (Main Memory)
• Virtual Memory: Hard disk

– Slow, Large, Cheap
Copyright © 2007 Elsevier 8-<44>

The Hard Disk

Takes milliseconds to seek
correct location on disk

Read/Write
Head

Magnetic
Disks

12

Copyright © 2007 Elsevier 8-<45>

Cache/Virtual Memory Analogues

Virtual Page NumberTag

Page FaultMiss

Page OffsetBlock Offset

Page SizeBlock Size

PageBlock

Virtual MemoryCache

Physical memory acts as cache for virtual memory

Copyright © 2007 Elsevier 8-<46>

Virtual Memory Definitions

• Page size: amount of memory transferred from
hard disk to DRAM

• Address translation: determining the physical
address from the virtual address

• Page table: lookup table used to translate virtual
addresses to physical addresses

Copyright © 2007 Elsevier 8-<47>

Virtual and Physical Addresses

Most accesses hit in physical memory
But programs have the large capacity of virtual memory

Copyright © 2007 Elsevier 8-<48>

Address Translation

13

Copyright © 2007 Elsevier 8-<49>

Virtual Memory Example

• System with
– Virtual memory size: 2 GB = 231 bytes
– Physical memory size: 128 MB = 227 bytes
– Page size: 4 KB = 212 bytes

• Organization
– Virtual addresses use 31 bits
– Physical addresses use 27 bits
– Page offset = 12 bits
– # Virtual pages = 231/212 = 219 (VPN = 19 bits)
– # Physical pages = 227/212 = 215 (PPN = 15 bits)

Copyright © 2007 Elsevier 8-<50>

Virtual Memory Example

• 19-bit virtual page numbers
• 15-bit physical page numbers

Copyright © 2007 Elsevier 8-<51>

Virtual Memory Example

What is the physical address
of virtual address 0x247C?

Copyright © 2007 Elsevier 8-<52>

Virtual Memory Example

What is the physical address of virtual
address 0x247C?

– VPN = 0x2
– VPN 0x2 maps to PPN 0x7FFF
– The lower 12 bits (page offset) is the

same for virtual and physical addresses
(0x47C)

– Physical address = 0x7FFF47C

14

Copyright © 2007 Elsevier 8-<53>

How do we translate addresses?

• Page table
– Has an entry for each virtual page
– Each entry indicates:

• Valid: whether the virtual page is located in physical memory
(if not, it must be fetched from the hard disk)

• Physical page number where the page is located

Copyright © 2007 Elsevier 8-<54>

Page Table Example

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Pa
ge

 T
ab

le

Page
Offset

Physical
Address 0x7FFF 47C

VPN is index
into page table

Copyright © 2007 Elsevier 8-<55>

Page Table Example 1

What is the physical
address of virtual address
0x5F20?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

P
ag

e
Ta

bl
e

Copyright © 2007 Elsevier 8-<56>

Page Table Example 1

What is the physical
address of virtual address
0x5F20?
– VPN = 5
– Entry 5 in page table

indicates VPN 5 is in
physical page 1

– Physical address is 0x1F20

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e
Ta

bl
e

Page
Offset

Physical
Address 0x0001 F20

15

Copyright © 2007 Elsevier 8-<57>

Page Table Example 2

What is the physical
address of virtual address
0x73E0?

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Hit

Physical
Page Number

15

Pa
ge

 T
ab

le

Copyright © 2007 Elsevier 8-<58>

Page Table Example 2

What is the physical
address of virtual address
0x73E0?
– VPN = 7
– Entry 7 in page table is

invalid, so the page is not in
physical memory

– The virtual page must be
swapped into physical
memory from disk

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e
Ta

bl
e

Page
Offset

Copyright © 2007 Elsevier 8-<59>

Page Table Challenges

• Page table is large
– usually located in physical memory

• Each load/store requires two memory accesses:
– one for translation (page table read)
– one to access data (after translation)

• Cuts memory performance in half
– Unless we get clever…

Copyright © 2007 Elsevier 8-<60>

Translation Lookaside Buffer (TLB)

• Use a translation lookaside buffer (TLB)
– Small cache of most recent translations
– Reduces number of memory accesses required for most

loads/stores from two to one

16

Copyright © 2007 Elsevier 8-<61>

Translation Lookaside Buffer (TLB)

• Page table accesses have a lot of temporal locality:
– Data accesses have temporal and spatial locality
– Large page size, so consecutive loads/stores likely to

access same page

• TLB
– Small: accessed in < 1 cycle
– Typically 16 - 512 entries
– Fully associative
– > 99 % hit rates typical
– Reduces # of memory accesses for most loads and

stores from 2 to 1
Copyright © 2007 Elsevier 8-<62>

Example Two-Entry TLB

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

Copyright © 2007 Elsevier 8-<63>

Memory Protection

• Multiple programs (processes) run at once
• Each process has its own page table
• Each process can use entire virtual address space

without worrying about where other programs are
• A process can only access physical pages mapped

in its page table – can’t overwrite memory from
another process

Copyright © 2007 Elsevier 8-<64>

Virtual Memory Summary

• Virtual memory increases capacity
• A subset of virtual pages are located in physical

memory
• A page table maps virtual pages to physical pages

– this is called address translation
• A TLB speeds up address translation
• Using different page tables for different programs

provides memory protection

17

Copyright © 2007 Elsevier 8-<65>

Memory-Mapped Input/Output (I/O)

• Processor accesses I/O devices (like keyboards,
monitors, printers) just like it accesses memory

• Each I/O device assigned one or more address
• When that address is detected, data is read from or

written to I/O device instead of memory
• A portion of the address space dedicated to I/O

devices (for example, addresses 0xFFFF0000 to
0xFFFFFFFF in reserved segment of memory
map)

Copyright © 2007 Elsevier 8-<66>

Memory-Mapped I/O Hardware

• Address Decoder:
– Looks at address to determine which device/memory

communicates with the processor

• I/O Registers:
– Hold values written to the I/O devices

• ReadData Multiplexer:
– Selects between memory and I/O devices as source of

data sent to the processor

Copyright © 2007 Elsevier 8-<67>

The Memory Interface

Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLK

Copyright © 2007 Elsevier 8-<68>

Memory-Mapped I/O Hardware

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E
1 CLK

00
01
10

CLK

18

Copyright © 2007 Elsevier 8-<69>

Memory-Mapped I/O Code

• Suppose I/O Device 1 is assigned the address
0xFFFFFFF4
– Write the value 42 to I/O Device 1
– Read the value from I/O Device 1 and place it in $t3

Copyright © 2007 Elsevier 8-<70>

Memory-Mapped I/O Code

• Write the value 42 to I/O Device 1 (0xFFFFFFF4)
addi $t0, $0, 42
sw $t0, 0xFFF4($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E1 = 1

CLK

00
01
10

CLKRecall that the 16-
bit immediate is
sign-extended to
0xFFFFFFF4

Copyright © 2007 Elsevier 8-<71>

Memory-Mapped I/O Code

• Read the value from I/O Device 1 and place it in
$t3

sw $t3, 0xFFF4($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0 = 01

W
E

2
W

E
1 CLK

00
01
10

CLK

Copyright © 2007 Elsevier 8-<72>

Example I/O Device: Speech Chip

• Allophone: fundamental unit of sound, for example:
– “hello” = HH1 EH LL AX OW

• Each allophone assigned a 6-bit code, for example:
– “hello” = 0x1B 0x07 0x2D 0x0F 0x20

See www.speechchips.com

19

Copyright © 2007 Elsevier 8-<73>

Speech Chip I/O

SP0256
A6:1

ALD
SBY

6

• A6:1: allophone input
• ALD: allophone load (low-asserted, i.e. loads

the address when ALD goes low)
• SBY: standby, indicates when the speech chip

is standing by waiting for the next
allophone

Copyright © 2007 Elsevier 8-<74>

Driving the Speech Chip

SPO256
A6:1

ALD
SBY

6

1. Set ALD to 1

2. Wait until the chip asserts SBY to indicate that
it has finished speaking the previous allophone
and is ready for the next one

3. Write a 6-bit allophone to A6:1

4. Reset ALD to 0 to initiate speech

Copyright © 2007 Elsevier 8-<75>

Memory-Mapping the I/O Ports

SPO256
A6:1

ALD
SBY

6

• A6:1: 0xFFFFFF00
• ALD: 0xFFFFFF04
• SBY: 0xFFFFFF08

Data

1000000C

10000008

10000004

Address

0x20

0x0F

0x2D

0x07

0x1B10000000

10000010 M
ain M

em
ory

Copyright © 2007 Elsevier 8-<76>

Software Driver for the Speech Chip

init: addi $t1, $0, 1 # $t1 = 1
addi $t2, $0, 20 # $t2 = array size * 4
lui $t3, 0x1000 # $t3 = array base address
addi $t4, $0, 0 # $t4 = 0 (array index)

start: sw $t1, 0xFF04($0) # ALD = 1
loop: lw $t5, 0xFF08($0) # $t5 = SBY

beq $0, $t5, loop # loop until SBY == 1

add $t5, $t3, $t4 # $t5 = address of allophone
lw $t5, 0($t5) # $t5 = allophone
sw $t5, 0xFF00($0) # A6:1 = allophone
sw $0, 0xFF04($0) # ALD = 0 to initiate speech
addi $t4, $t4, 4 # increment array index
beq $t4, $t2, done # last allophone in array?
j start # repeat

done:

20

Copyright © 2007 Elsevier 8-<77>

Hardware for Supporting SP0256

Copyright © 2007 Elsevier 8-<78>

SP0256 Pin Connections

Copyright © 2007 Elsevier 8-<79>

Memory System Review

• The memory interface
• Memory hierarchy
• Memory-mapped I/O

Copyright © 2007 Elsevier 8-<80>

Review: The Memory Interface

Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLK

21

Copyright © 2007 Elsevier 8-<81>

Review: The Memory Hierarchy

Cache

Main Memory

Virtual Memory

Size

Speed

Technology cost / GB Access time

SRAM ~ $10,000 ~ 1 ns

DRAM ~ $100 ~ 100 ns

Hard Disk ~ $1 ~ 10,000,000 ns

Emulate memory that is: fast, large, cheap
Copyright © 2007 Elsevier 8-<82>

Review: Memory-Mapped I/O Hardware

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E
1 CLK

00
01
10

CLK

Copyright © 2007 Elsevier 8-<83>

Course Summary

• You have learned about:
– Combinational and sequential logic
– Schematic and HDL design entry
– Digital building blocks: adders, ALUs, multiplexers, decoders,

memories, etc.
– Assembly language – computer architecture
– Processor design – microarchitecture
– Memory system design

• The world is an increasingly digital place
• You have the tools to design and build powerful digital

circuits that will shape our world
• Use this power wisely and for good!

