Digital Design and Computer Architecture
David Money Harris and Sarah L. Harris

Copyright © 2007 Elsevier 8-<1>

» Computer performance depends on:
— Processor performance
— Memory system performance

Memory Interface
CLK CLK

MemWrite . [WE
Address
. »
WriteData
»

ReadData

Processor Memory

Copyright © 2007 Elsevier 8<3>

* Introduction

* Memory System Performance Analysis
» Caches

* Virtual Memory

* Memory-Mapped I/O

e Summary

Copyright © 2007 Elsevier 8-<2>

 Up until now, assumed memory could be accessed
in 1 clock cycle

« But that hasn’t been true since the 1980’s

PESPIEPEFEFIIPFIFI SIS FEFE
Year

Copyright © 2007 Elsevier 8-<4>

» Make memory system appear as fast as processor
» Use a hierarchy of memories
* |deal memory:

— Fast

— Cheap (inexpensive)

— Large (capacity)

Copyright © 2007 Elsevier 8-<5>

« Exploit locality to make memory accesses fast
e Temporal Locality:

— Locality in time (e.g., if looked at a Web page recently, likely to
look at it again soon)

— If used data recently, likely to use it again soon
— How to exploit: keep recently accessed data in higher levels of
memory hierarchy
e Spatial Locality:
— Locality in space (e.g., if read one page of book recently, likely to
read nearby pages soon)
— If used data recently, likely to use nearby data soon

— How to exploit: when access data, bring nearby data into higher
levels of memory hierarchy too

Copyright © 2007 Elsevier 8<7>

Technology | cost/ GB | Access time

SRAM ~$10,000| ~1ns
Cache

%]
® DRAM ~ $100 ~ 100 ns
g Main Memory
Hard Disk ~$1 ~ 10,000,000 ns
Virtual Memory
—_———
Size
Copyright © 2007 Elsevier 8-<6>

» Hit: is found in that level of memory hierarchy
e Miss: is not found (must go to next level)

Hit Rate = # hits / # memory accesses
=1 - Miss Rate

Miss Rate = # misses / # memory accesses
=1 - Hit Rate

e Average memory access time (AMAT): average time it
takes for processor to access data

AMAT = 1:(:alche + MRcache[tMM + MRMM(tVM)]

Copyright © 2007 Elsevier 8-<8>

* A program has 2,000 load and store instructions

« 1,250 of these data values found in cache

¢ The rest are supplied by other levels of memory hierarchy
¢ What are the miss and hit rates for the cache?

Copyright © 2007 Elsevier 8-<9>

« Suppose processor has 2 levels of hierarchy: cache and main
memory

o tocne = 1 cycle, ty, = 100 cycles
* What is the AMAT of the program from Example 1?

Copyright © 2007 Elsevier 8<11>

A program has 2,000 load and store instructions

1,250 of these data values found in cache

* The rest are supplied by other levels of memory hierarchy
What are the miss and hit rates for the cache?

Hit Rate = 1250/2000 = 0.625
Miss Rate = 750/2000 = 0.375 = 1 — Hit Rate

Copyright © 2007 Elsevier 8-<10>

 Suppose processor has 2 levels of hierarchy: cache and main
memory

* toee = 1 Cycle, ty, = 100 cycles

* What is the AMAT of the program from Example 1
when using this memory system?

AMAT = tcache + MRcache(tMM)

=[1+ 0.375(100)] cycles
=38.5 cycles

Copyright © 2007 Elsevier 8-<12>

* Amdahl’s Law: the effort
spent on increasing the
performance of a subsystem
is wasted unless the
subsystem affects a large
percentage of the overall
performance

» Cofounded three companies,
including one called Amdahl
Corporation in 1970

Copyright © 2007 Elsevier 8-<13>

« What data is held in the cache?
» How is data found?
» What data is replaced?

We’ll focus on data loads, but stores follow same principles

Copyright © 2007 Elsevier 8-<15>

A safe place to hide things

Highest level in memory hierarchy

Fast (typically ~ 1 cycle access time)

Ideally supplies most of the data to the processor
Usually holds most recently accessed data

Copyright © 2007 Elsevier 8-<14>

« Ideally, cache anticipates data needed by
processor and holds it in cache

» But impossible to predict future

 So, use past to predict future — temporal and
spatial locality:
— Temporal locality: if processor accesses data not held

in cache, copy data from lower level of hierarchy into
cache. Next time, data is available in cache.

— Spatial locality: copy neighboring data into cache
too. Block size = number of bytes copied into cache at
once.

Copyright © 2007 Elsevier 8-<16>

 Capacity (C):
— the number of data bits a cache stores

Cache organized into S sets
Each memory address maps to exactly one set

* Blocksize (b): « Caches categorized by number of blocks in a set:
— bits of data brought into cache at once — Direct mapped: 1 block per set
* Number of blocks (B = C/b): - N-way set associative: N blocks per set
— number of blocks in cache: B = C/b — Fully associative: all cache blocks are in a single set
L[] 1 vi N - - - -
Degree of associativity (N): « Examine each organization for a cache with:
— number of blocks in a set _ Capacity (C = 8 words)
e Number of sets (S = B/N) — Block size (b = 1 word)
— each memory address maps to exactly one cache set — So, number of blocks (B = 8)
Copyright © 2007 Elsevier 8-<17> Copyright © 2007 Elsevier 8-<18>
Address Byte
...11111100 mem[OxFF...FC]
11...11111000 memOxFF...F8] Memory Set Oﬁse'
11..11110100 mem{OXFF...F4] Address -
11...11110000 mem[OxFF...FO] V Tag Data
11...11101100 mem[OxFF...EC]
11...11101000 mem[OxFF...E8]
11...11100100 mem[OxFF...E4] 8-entry x
11...11100000 mem[OxFF...E0] (1+27+32)-bit
. . SRAM
00...00100100 mem[0x00...24]
00...00100000 mem[0x00..20] Set Number
00...00011100 mem[0x00..1C] 7 (111)] 27 32
00...00011000 mem[0x00...18] 6 (110) =
00...00010100 mem[0x00...14] 5(101)
00...00010000 mem[0x00...10] 4 (100)
00...00001100 mem[0x00...0C] 3(011)
00...00001000 mem[0x00...08] 2 (010)
00...00000100 mem[0x00...04] 1(001) .
00...00000000 mem[0x00...00] > 0 (000) Hit Data
Copyright © 2007 Elsevier 530 \p/ ord Main Memory 23 Word Cache 8-<19> Copyright © 2007 Elsevier 8-<20>

Byte

Memory Tag Set Offset
Address 00..00 m
V Tag Data
Set 7 (111
MIPS assembly code g Sztsgllog
0 Set 5 (101)
addi $t0, $0, 5 0 ge:ggéggg
- 1| 00...00 | mem[0x00...0C] e

loop: beq $t0, $0, done 1] 00..00 | mem[0x00..08] | Set 2 (010)
Iw $tl, 0x4($0) 1| 00..00 | mem[0x00..04] | Set 1 (001)
Iw $t2, 0xC($0) 0 Set 0 (000)

Iw $t3, 0x8($0)
addi $t0, $t0, -1

Miss Rate = 3/15

Byte
Mem ory Tag Set Offset
Address 00...00 m
V Tag Data
Set 7 (111,
MIPS assembly code S(eet6§110;
Set 5 (101)
addi $t0, $0, 5 ge:g%g(l))
loop: beq $t0, $0, done sztzgomg
Iw $tl, 0x4($0) Set 1 (001)
v $t2, OxC($0) Set 0 (000)
Iw $t3, 0x8($0)
addi $t0, $t0, -1 . _
j loop Miss Rate =
done:
Copyright © 2007 Elsevier 8-<21>
Byte
Memory Tag Set Offset
Address 00..01 m
V Tag Data

MIPS assembly code

addi $t0, $0, 5

loop: beq $tO, $0, done
Iw $tl, 0x4($0)
Iw $t2, 0x24($0)
addi $t0, $t0, -1
1] loop

Copyright © 2007 Elsevier

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

8-<23>

J loop
done: =20%
Temporal Locality
Copyright © 2007 Elsevier . 8-<22>
Compulsory Misses
Byte
Memory Tag Set Offset
Address 00..01 m
V Tag Data
MIPS assembly code 0 29:2818
0 e
i 0 Set 5 (101)
addi $t0, $0, 5 0 Set 4 (100)
loop: beq $tO, $0, done 0 Set 3 (011)
Set 2 (010
fw $t1, 0x4(30) 2 00...00 | MeM[OX00...0% SetléOOl;
Iw $t2, 0x24($0) o 3 | set 0 (000)

addi $t0, $t0, -1
i loop
done:

Copyright © 2007 Elsevier

Miss Rate = 10/10
=100%
Conflict Misses

8-<24>

Byte
Memory — 129 '
Address Way 1 Way 0
28 2 r 17
V_ Tag Data V Tag Data

32

‘ T 28 32

Hit

Copyright © 2007 Elsevier

MIPS assembly code

addi $t0, $0, 5
loop: beq $tO, $0, done
Iw $tl, 0x4($0)
Iw $t2, 0x24($0)
addi $t0, $t0, -1

Miss Rate = 2/10
=20%

Associativity

reduces conflict misses

j loop
done:
Way 1 Way 0
I 1T
V Tag Data V Tag Data
0 0 Set 3
0 0 Set 2
1| 00..10 | mem[0x00...24] | 1| 00..00 | mem[0x00..04] | Set 1
0 0 Set 0

Copyright © 2007 Elsevier

8-<27>

MIPS assembly code

addi $t0, $0, 5
loop: beq $tO, $0, done
Iw $tl, 0x4($0)
v $t2, 0x24($0)
addi $t0, $t0, -1
i loop
done:
Way 1 Way 0

T 17
V Tag Data V Tag Data

Copyright © 2007 Elsevier

V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Da\t_e\I
[T T [T T [T 1 [T T [T 1 [T T [T T [T T

No conflict misses
Expensive to build

Copyright © 2007 Elsevier 8-<28>

¢ Increase block size:
— Block size, b = 4 words
- C=8words
— Direct mapped (1 block per set)
— Number of blocks, B =C/b =8/4=2

Block Byte
Memory Tag Set Offset Offset

Address 00

27 2
V Tag

il I [

| Set1

| Set0

T Jor
AN

Copyright © 2007 Elsevier Hit

Data

addi $t0, $0, 5

loop: beq $tO, $0, done
Iw $tl, 0x4($0)
Iw $t2, OxC($0)
Iw $t3, 0x8($0)
addi $t0, $t0, -1
j loop

done:
Block Byte
Memory Tag Set Oﬁsei%fgel

Address

2
V Tag

gl I }

L] I
T Jar 132

Copyright © 2007 Elsevier

Data

8-<31>

Block Byte
Memory Tag Set Offset Offset
[100..100] 1 | 11 [00 |
Address T) L i
800000 9 C
Block Byte
Memory T2 Set Offset Offsct
Address 00
21 2
V Tag Data
| | Set1
| I] seto
T Jor a2 a2 a2 a2
_ Fs2
Hit Data
Copyright © 2007 Elsevier 8-<30>
addi $t0, $0, 5
loop: beq $tO, $0, done
Iw $tl, 0x4($0)
Iw $t2, 0xC($0) Miss Rate = 1/15
Iw $t3, 0x8($0) =6.67%
addi $t0, $t0, -1
i Larger blocks
j loop)
done: e reduce compulsory misses
ag Set Offset Offset - .
Addrees 000001 1. [00 through spatial locality
V Tag Data
{o] I I I I] Set1
(2] 00...00 | mem[0x00...0C] | mem(0x00...08] | mem[0x00...04] | mem[0x00..00] | Set O
T a2 Jz2 sz ez
732
Copyright © 2007 Elsevier Hit Data 8-<32>

e Capacity: C
e Block size: b
« Number of blocks in cache: B = C/b
« Number of blocks in a set: N

e Number of Sets: S = B/N

Number of Ways | Number of Sets
Organization (N) (S=BIN)
Direct Mapped 1 B
N-Way Set Associative |1 <N <B B/N
Fully Associative B 1
Copyright © 2007 Elsevier 8-<33>
MIPS assembly
Iw $t0, 0x04($0)
Iw $t1, 0x24($0)
Iw $t2, 0x54($0)
V U Tag Data V Tag Data Set Number
3(11)
2 (10)
@ 1(01)
0 (00)
\% Tag Data V Tag Data Set Number
3(11)
2(10)
(b) 1(01)
0 (00)

Copyright © 2007 Elsevier

8-<35>

¢ Cache isn’t big enough to hold all data of interest at one time

¢ If the cache is full and program tries to access data X that is not in
cache, cache must evict data Y to make room for X

« Capacity miss occurs if program then tries to access Y again
e Xwill be placed in a particular set based on its address
* Inadirect mapped cache, there is only one place to put X

< Inan associative cache, there are multiple ways where X could go in
the set.

« How to choose Y to minimize chance of needing it again?

¢ Least recently used (LRU) replacement: the least recently used
block in a set is evicted when the cache is full.

Copyright © 2007 Elsevier 8-<34>

MIPS assembly

Iw $t0, 0x04($0)
Iw $t1, 0x24($0)
Iw $t2, 0x54($0) Way 1

Way 0
r 10 1
V U Tag Data V Tag Data
olo 0 Set 3 (11)
olo 0 Set 2 (10)
1|0/ 00..010| mem[0x00...24] | 1| 00...000| mem[0x00..04] | Set 1 (01)
olo 0 Set 0 (00)
(@)
Way 1 Way 0
r 1T 1
V U Tag Data V Tag Data
0lo0 0 Set 3 (11)
olo 0 Set 2 (10)
1]1]00..010| mem[0x00...24] | 1| 00...101| mem[ox00..54] | Set 1 (01)
0o 0 Set 0 (00)
(b)

Copyright © 2007 Elsevier 8-<36>

* What data is held in the cache?

— Recently used data (temporal locality)

— Nearby data (spatial locality, with larger block sizes)
e How is data found?

— Set is determined by address of data

— Block within set also determined by address of data

— In associative caches, data could be in one of several ways
» What data is replaced?

— Least-recently used way in the set

Copyright © 2007 Elsevier 8-<37>

Block size

Bigger blocks reduce compulsory misses
Bigger blocks increase conflict misses

Copyright © 2007 Elsevier 8-<39>

oy Bigger caches reduce
capacity misses
Greater associativity reduces

A-way - -
swgy CONFlict misses

Missrate pps |
per type
0.04
003 -
002 -
Capagcity
001 | Compulsory
0.00 L L L i
4 8 18 az 2] 128 258 512 1024
Cache size (KB)
Copyright © 2007 Elsevier Adapted from Patterson & Hennessy, Computer Architecture: A 8-<38>
Quantitative Approach

* Larger caches have lower miss rates
» But also have longer access times

» Expand the memory hierarchy to multiple levels
of caches

» Level 1: small and fast (e.g. 16 KB, 1 cycle)

» Level 2: larger and slower (e.g. 256 KB, 2-6
cycles)
» Even more levels are possible

Copyright © 2007 Elsevier 8-<40>

10

Copyright © 2007 E 8-<41>

Technology | cost/GB | Access time
/\ SRAM ~$10,000(~1ns
Cache
%)
B DRAM ~ $100 ~ 100 ns
3 Main Memory
Hard Disk ~$1 ~ 10,000,000 ns
Virtual Memory
- 5
Capacity
e Physical Memory: DRAM (Main Memory)
e Virtual Memory: Hard disk
— Slow, Large, Cheap
Copyright © 2007 Elsevier 8-<43>

¢ Gives the illusion of a bigger memory without the high
cost of DRAM

« Each program uses virtual addresses

— The entire virtual address space is stored on a hard disk, but
DRAM acts as a cache for the most commonly accessed parts

— These virtual addresses are translated by the CPU into physical
addresses in DRAM. If the data is not in DRAM, it is fetched from
the hard disk.

« Each program can have its own virtual to physical mapping

— Two programs can use the same virtual address for different data

— Programs don’t need to be aware that other ones are running

— One program (or virus) can’t corrupt the memory used by another

— This is called memory protection

Copyright © 2007 Elsevier 8-<42>

Magnetic
Disks
Read/Write
Head
Takes milliseconds to seek
Copyright ©2007 Elsevier correct location on disk Bt

11

Physical memory acts as cache for virtual memory

Cache Virtual Memory
Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Copyright © 2007 Elsevier 8-<45>

Virtual Addresses Fiact

Physical Addresses

Physical Memory

Hard Disk

© D0OT Elwriar, I AL aighes resdved

Most accesses hit in physical memory
But programs have the large capacity of virtual memory

Copyright © 2007 Elsevier 8-<47>

¥

* Page size: amount of memory transferred from
hard disk to DRAM

» Address translation: determining the physical
address from the virtual address

e Page table: lookup table used to translate virtual
addresses to physical addresses

Copyright © 2007 Elsevier 8-<46>

Virtual Address

302928 ...14 1312 11108 ... 210
| VPN | Page Offset |

L

412

| PPN | Page Offset |
26 2524 ..1312 11109 ... 210

Physical Address

Copyright © 2007 Elsevier 8-<48>

12

e System with

— Virtual memory size: 2 GB = 23 bytes
— Physical memory size: 128 MB = 2?27 bytes

— Page size: 4 KB = 212 bytes

Organization

— Virtual addresses use 31 bits

— Physical addresses use 27 bits

— Page offset = 12 bits

— # Virtual pages = 231/212 = 219 (VVPN = 19 bits)
— # Physical pages = 227/212 = 215 (PPN = 15 bits)

Copyright © 2007 Elsevier

What is the physical address
of virtual address 0x247C?

Physical
Page
Number Physical Addresses

"!
IEEWEEEEEIKEEEEEEEEI
Physical Memary

0000

© 2007 Bivevkas, Inc. A8 nghds rserwnd

Copyright © 2007 Elsevier

OX7FFFEOOO Ox7FFFEFFF

0x7FFFBO00 - Ox7FFFBFFF
0x7FFFAQ00 - Ox7TFFEAFFF | 7FFFA

Virtual

Page
Virtual Addresses Number
OX7FFFF000 - OX7FFFFEFF | 7FFFF
7FFFE
7FFFD
7FFFC
7FFFB

0x7FFF9000 - Ox7FFFIFFF_| 7FFF9

0x00008000 - 0xO0006FFF | 00006

0x00005000 - 0xO000SFFF | 00005
0x00004000 - 0x0O0004FFF | 00004

UxOUOOaDOD UXODGDSFFF 00003
i ; - Ox0¢ 00002
axooom 000 - 0x00001FFF_| 00001
0x00000000 - Ox00000FFF | 00000

Virtual Memory

 19-bit virtual page numbers
 15-bit physical page numbers

[Ox7FFFAQDD - OX7FFFAFFF |

Virtual
Page

Virtual Addresses Number

Ox7FFFF000 - OX7FFFFFFF
Ox7FFFE000 - OXTFFFEFFF

0x7FFFBO00 - 0x7FFFBFFF

0x7FFF9000 - 0x7FFFIFFF

Physical
Page

Number Physical Addresses

"!
IEEWEEEEEIKEEEEEEEEI
Physical Memory

0000

Copyright © 2007 Elsevier

0x00005000 - 0x00005FFF
0x00004000 - 0x00004FFF

.GxOOOO 000 - 0x00001FFF

0x00006000 - 0x00006FFF

UxOUO[]aDOD 0x00003FFF

0x00000000 - 0x00000FFF
Virtual Memory

© 2007 Wvavint, Inc. AR igrts rosarved

7FFFF
7FFFE
7FFFD
7FFFC
TFFFB
TFFFA
7FFF9

:

-
00006
00005
00004
00003
00002
00001

00000

What is the physical address of virtual
address 0x247C?
VPN = 0x2
— VPN 0x2 maps to PPN 0X7FFF
— The lower 12 bits (page offset) is the

(0x47C)
— Physical address = 0x7FFF47C
Physical
Page
Number Physical Addresses

same for virtual and physical addresses } :

Virtual
Page

Virtual Addresses Number

Ox7FFFF000 - OX7FFFFFFF
Ox7FFFE000 - OXTFFFEFFF

0x7FFFBO00 - 0x7FFFBFFF

0x7FFFAQQ0 - 0x7FFFAFFF

0x7FFF000 - 0x7FFFIFFF
-

0x00006000 - 0x00006FFF
0x00005000 - Ox00005FFF
0x00004000 - 0x00004FFF
UXOUUGB-DOD 0x00003FFF

GxOOOO 000 - 0x00001FFF

"!
IEEWEEEEEIE?”FEﬂEEEI
Physical Memory

0000

Copyright © 2007 Elsevier

0x00000000 - 0x00000FFF
Virtual Memory

© 2007 Wvavint, Inc. AR igrts rosarved

7FFFF
7FFFE
7FFFD
7FFFC
TFFFB
TFFFA
7FFF9

:

-
00006
00005
00004
00003
00002
00001

00000

13

e Page table
— Has an entry for each virtual page

— Each entry indicates:

 Valid: whether the virtual page is located in physical memory
(if not, it must be fetched from the hard disk)

¢ Physical page number where the page is located

Copyright © 2007 Elsevier 8-<53>

Physical
\ Page Number
0
H i 0
What is the physmal 1 00000
address of virtual address 1 Ox7FFE
0x5F20? 0 o
0 o
. ©
. [
° S
g &
1 0x0001
0
10|
1 OX7FFF
0
7
Hit fis
Copyright © 2007 Elsevier 8-<55>

Virtual Page
Virtual -Page Number Offset
Address —0X00002
19 12
Physical
v Page Number
0
]
.. 1 0x0000
VPN is index 1 Ox7FFE
H 0
into page table 0 2
: <
: g
g &
1 0x0001
0
0
1 OX7FFFE
0
0
H‘it 15 12
Physical
Copyright © 2007 Elsevier Ad)t;rless OX7FFF | 47C 8-<54>
Virtual Page
. Page Number Offset
A\;'grﬁs 0x00005
19 12
What is the physical Prysical
- \ Page Number
address of virtual address 0
0x5F20? 1] 0x0000
1 OX7FFE
- VPN=5 0 °
=}
— Entry 5 in page table : E
indicates VPN 5 is in 0 g
i 0
physical page 1 i 00001
— Physical address is 0x1F20 2
1 OX7FFF
0
0
H‘il 15 12
i F20
Copyright © 2007 Elsevier 8-<56>

14

Physical
Vv Page Number) pa‘g’h‘;ﬁ o Page
0 A\ggr“eﬂs 000007 T 3E0]
What is the physical A m—To What is the physical :
address of virtual address 1 OX7FFE address of virtual address v e
0x73EQ? 8 o 0x73EQ? g
Q
rE - V=T -
|| b o — Entry 7 in page table is g o
8 g invalid, so the page is not in 8
1 ox0001 physical memory >0 g
0 — The virtual page must be ‘1) SGoT
0 swapped into physical 0
1 OX7FFF memory from disk Y e
0 0
0 0
\ ! s
Copyright © 2007 Elsevier Hit +15 8-<57> Copyright © 2007 Elsevier it 8-<58>
e Page table is large » Use atranslation lookaside buffer (TLB)
— usually located in physical memory — Small cache of most recent translations
« Each load/store requires two memory accesses: — Reduces number of memory accesses required for most
— one for translation (page table read) loads/stores from two to one
— one to access data (after translation)
¢ Cuts memory performance in half
— Unless we get clever...
Copyright © 2007 Elsevier 8-<59> Copyright © 2007 Elsevier 8-<60>

» Page table accesses have a lot of temporal locality:
— Data accesses have temporal and spatial locality

— Large page size, so consecutive loads/stores likely to
access same page

« TLB
— Small: accessed in < 1 cycle
— Typically 16 - 512 entries
— Fully associative
— > 99 % hit rates typical

— Reduces # of memory accesses for most loads and
stores from 2 to 1

Copyright © 2007 Elsevier 8-<61>

e Multiple programs (processes) run at once
e Each process has its own page table

« Each process can use entire virtual address space
without worrying about where other programs are

« A process can only access physical pages mapped
in its page table — can’t overwrite memory from
another process

Copyright © 2007 Elsevier 8-<63>

Virtual Page
Page Number Offset
0x00002 47C

19 12

Virtual
Address

Entry 1 Entry O
r 17 1
Virtual Physical virtual Physical
V__Page Number Page Number v _Page Number Page Number

1 X7EFED X 1 X 2 Xx7EEE_|TLB
19 15 19 15

Hit,

15 12

Physical
Ao [OXTFEE

Copyright © 2007 Elsevier 8-<62>

 Virtual memory increases capacity

» A subset of virtual pages are located in physical
memory

» A page table maps virtual pages to physical pages
— this is called address translation
e A TLB speeds up address translation

 Using different page tables for different programs
provides memory protection

Copyright © 2007 Elsevier 8-<64>

16

Processor accesses 1/0O devices (like keyboards,
monltors, printers) just like it accesses memory

¢ Each 1/O device assigned one or more address

* When that address is detected, data is read from or
written to 1/0 device instead of memory

¢ A portion of the address space dedicated to 1/0
devices (for example, addresses OxFFFF0000 to
OXFFFFFFFF in reserved segment of memory
map)

Copyright © 2007 Elsevier 8-<65>

CLK

MemWrite
Lad

Address

WriteData:
»

Processor ReadData

Memory

Copyright © 2007 Elsevier 8-<67>

e Address Decoder:

— Looks at address to determine which device/memory
communicates with the processor

* |/O Registers:
— Hold values written to the 1/0 devices
* ReadData Multiplexer:

— Selects between memory and 1/O devices as source of
data sent to the processor

Copyright © 2007 Elsevier 8-<66>

2|2 =
CLK o T c
N MemWrite ;VE
Processor Address Memory
WriteData

ReadData

Device 2

Copyright © 2007 Elsevier 8-<68>

17

e Suppose 1/0 Device 1 is assigned the address
OXFFFFFFF4
— Write the value 42 to 1/0 Device 1
— Read the value from 1/O Device 1 and place it in $t3

Copyright © 2007 Elsevier 8-<69>

* Read the value from 1/O Device 1 and place it in
$t3
sw $t3, OxFFF4($0)

Address Decoder ‘

23M

CLK

N
Processor

MemWrite
Address
WriteData

ReadData

Copyright © 2007 Elsevier 8-<71>

¢ Write the value 42 to 1/O Device 1 (OXFFFFFFF4)
addi $t0, $0, 42
sw $t0, OxFFF4($0)

Address Decoder ‘

Recall that the 16-
bit immediate is
sign-extended to
OXFFFFFFF4

MemWrite
Address
WriteData

Processor

Copyright © 2007 Elsevier

* Allophone: fundamental unit of sound, for example:
- “hello” = HH1 EH LL AX OW

 Each allophone assigned a 6-bit code, for example:
— “hello” = 0x1B 0x07 0x2D OxOF 0x20

See www.speechchips.com

Copyright © 2007 Elsevier 8-<72>

18

Copyright © 2007 Elsevier

SP0256

A6:1

—_— BY
ALD S

allophone input

allophone load (low-asserted, i.e. loads
the address when ALD goes low)
standby, indicates when the speech chip
is standing by waiting for the next
allophone

8-<73>

° Agyl
e« ALD:
* SBY:

Copyright © 2007 Elsevier

SPO256

/\&1

—_— SBY
ALD

Aiowa\ urepy

Address Data

OXFEFFFF00 10000010 0x20
OXFEFEFF04 1000000C OXOF
10000008 0x2D

OxFFFFFFO8 10000004 0x07
10000000 ox1B

8-<75>

Copyright © 2007 Elsevier

SP0O256

AG:l

e — BY
ALD S

SetALDto 1

Wait until the chip asserts SBY to indicate that
it has finished speaking the previous allophone
and is ready for the next one

Write a 6-bit allophone to Ag,;
Reset ALD to 0 to initiate speech

8-<74>

init: addi $t1, $0, 1 # $tl = 1
addi $t2, $0, 20 # $t2 = array size * 4
Tui $t3, 0x1000 # $t3 = array base address
addi $t4, $0, O # $t4 = 0 (array index)
start: sw $tl, OxFFO4($0) # ALD =1
loop: Iw $t5, OXFFO8($0) # $t5 = SBY
beq $0, $t5, loop # loop until SBY == 1

add $t5, $t3, $t4 # $t5 = address of allophone
Iw $t5, 0($t5) # $t5 = allophone

sw $t5, OxFFOO($0) # A6:1 = allophone

sw $0, OxFFO4($0) # ALD = O to initiate speech
addi $t4, $t4, 4 # increment array index

beq $t4, $t2, done # last allophone in array?

J start # repeat

done:

Copyright © 2007 Elsevier

8-<76>

19

Address Decoder

= =
m m
= = ClK
r——€7\
WE
Memory
| SO
CLK
=0 As; SBY
EN
SPO256
2 ALD

EN| | J

Copyright © 2007 Elsevie.

Ty L —

Copyright © 2007 Elsevier

e The memory interface
* Memory hierarchy
¢ Memory-mapped I/0

8-<79>

Ly
— 1 Vs osc2 28 0 3.12 MHz
—2 Reset osc1 27 3—
—L]3 ROM Disable ROM Clock 26 [anpwer: ookt
Os 1 SBY Reset 25 | —f
Os cez Digital Out 24 3—
Oe c3 Vo 23 [& -
. =7 Voo Test 22 [
o —L|8 sgy Serin 21 [J
Processor Oe ira ALD 20 [From
10 A8 sE 19 [—— Processor
11 a7 Al 18 [—
[} 12 serow 17 [T From
From Eat RN SP0256 A3 16 —— Processor
Processor —] 14 A5 A4 15 —
v ~
© 2007 Etvwviar, . AL Sghts fessived
Copyright © 2007 Elsevier 8-<78>
CLK
|
MemWrite'
Processor —2d4esS 3| pemory HReadbata
WriteData .
»

Copyright © 2007 Elsevier

8-<80>

20

Technology | cost/ GB | Accesstime
SRAM ~$10,000| ~1ns
Cache
[}
B DRAM ~ $100 ~100 ns
2 Main Memory
Hard Disk ~$1 ~ 10,000,000 ns
Virtual Memory
—_——
Size
Emulate memory that is: fast, large, cheap
Copyright © 2007 Elsevier 8-<81>

* You have learned about:
— Combinational and sequential logic
— Schematic and HDL design entry

— Digital building blocks: adders, ALUs, multiplexers, decoders,
memories, etc.

— Assembly language — computer architecture
— Processor design — microarchitecture
— Memory system design
e The world is an increasingly digital place
« You have the tools to design and build powerful digital
circuits that will shape our world

« Use this power wisely and for good!

Copyright © 2007 Elsevier 8-<83>

N

Processor

MemWrite
Address

Address Decoder

22 2

o T c
we
Memory

WriteData

CLK

ReadData

Device 1

110

Device 2

Copyright © 2007 Elsevier

21

