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Chapter 5 :: Topics

• Introduction
• Arithmetic Circuits
• Number Systems
• Sequential Building Blocks
• Memory Arrays
• Logic Arrays

Copyright © 2007 Elsevier 5-<3>

Introduction

• Digital building blocks include:
– Gates, multiplexers, decoders, registers, arithmetic circuits, 

counters, memory arrays, logic arrays

• Building blocks are important in their own right and they 
demonstrate hierarchy, modularity, and regularity:
– They are built from a hierarchy of simpler components.
– They have well-defined interfaces and functions.
– Their regular structure is easily extended to different sizes.

• We’ll use many of these building blocks to build a 
microprocessor in Chapter 7
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Multibit Adder, also called CPA

A B

S

Cout Cin+
N

NN

• Several types of carry propagate adders (CPAs) are:
– Ripple-carry adders (slow)
– Carry-lookahead adders (fast)
– Prefix adders (faster)

• Carry-lookahead and prefix adders are faster for large adders 
but require more hardware.

Symbol
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• Chain 1-bit adders together
• Carry ripples through entire chain
• Disadvantage: slow

Ripple-Carry Adder
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• The delay of an N-bit ripple-carry adder is:
tripple = NtFA

where tFA is the delay of a full adder

Ripple-Carry Adder Delay
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• Computes the carry out (Cout) for N-bit blocks first, so the 
carry doesn’t have to ripple through the entire chain.

• Does this by computing generate (G) and propagate (P) 
signals for columns and then N-bit blocks.

• A column (bit i) can produce a carry out by either generating a 
carry out or propagating a carry in to the carry out.

• We define generate (Gi) and propagate (Pi) signals for each 
column:
– A column will generate a carry out if Ai AND Bi are both 1. 

Gi = Ai Bi

– A column will propagate a carry in to the carry out if Ai OR Bi is 1.
Pi = Ai  + Bi

• We compute the carry out of a column (Ci) as:
Ci = Ai Bi + (Ai  + Bi )Ci-1 = Gi + Pi Ci-1

Carry-Lookahead Adder
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• Now we compute generate and propagate signals for N-bit 
blocks.

• For example, we can calculate generate and propagate 
signals for a 4-bit block (G3:0 and P3:0) :
– A 4-bit block will generate a carry out if column 3 generates a carry 

(G3) or if column 3 propagates a carry (P3) that was generated or 
propagated in a previous column as described by the following 
equation:

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0 )
– A 4-bit block will propagate a carry in to the carry out if all of the 

columns propagate the carry:
P3:0 = P3P2 P1P0

• We compute the carry out of the 4-bit block (Ci) as:
Ci = Gi:j + Pi:j Ci-1

Carry-Lookahead Adder
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32-bit CLA with 4-bit blocks
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• The delay of an N-bit carry-lookahead adder with k-bit blocks 
is:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

where
– tpg is the delay of the column generate and propagate gates
– tpg_block is the delay of the block generate and propagate gates
– tAND_OR is the delay from Cin to Cout of the final AND/OR gate in the 

k-bit CLA block

• The delay of an N-bit carry-lookahead adder is generally 
much faster than a ripple-carry adder for N > 16

Carry-Lookahead Adder Delay
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Prefix Adder

• Computes generate and propagate signals for all of the 
columns to perform addition even faster.

• Computes G and P for 2-bit blocks, then 4-bit blocks, then 
8-bit blocks, etc. until the generate and propagate signals are 
known for each column.

• Thus, the prefix adder has log2N stages.
• The strategy is to compute the carry in (Ci-1) for each of the 

columns as fast as possible and then to compute the sum:

Si = (Ai ⊕ Bi) ⊕ Ci-1
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Prefix Adder

• A carry is generated by being either generated in a column 
or propagated from a previous column.

• Define column -1 to hold Cin, so 
G-1 = Cin, P-1 = 0

• Then, 
Ci-1 = Gi-1:-1

because there will be a carry out of column i-1 if the block 
spanning columns i-1 through -1 generates a carry.

• Thus, we can rewrite the sum equation as:
Si = (Ai ⊕ Bi) ⊕ Gi-1:-1 = Pi ⊕ Gi-1:-1

• Goal:
– Quickly compute G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1, …
– These are called the prefixes
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Prefix Adder

• The generate and propagate signals for a block spanning bits 
i:j are:

Gi:j = Gi:k + Pi:k Gk-1:j

Pi:j = Pi:kPk-1:j

• In words, these prefixes describe that:
– A block will generate a carry if the upper part (i:k) generates a carry 

or of the upper part propagates a carry generated in the lower part 
(k-1:j)

– A block will propagate a carry if both the upper and lower parts
propagate the carry.
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Prefix Adder Schematic

0:-1

-1

2:1

1:-12:-1

012

4:3

3

6:5

5:36:3

456

5:-16:-1 3:-14:-1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

BiAi

Gi:iPi:i

Gk-1:jPk-1:jGi:kPi:k

Gi:jPi:j

i
i:j

BiAiGi-1:-1

Si

iLegend

Copyright © 2007 Elsevier 5-<18>

• The delay of an N-bit prefix adder is:
tPA = tpg + log2N(tpg_prefix ) + tXOR

where
– tpg is the delay of the column generate and propagate gates
– tpg_prefix is the delay of the black prefix cell (AND-OR gate)

Prefix Adder Delay
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• Compare the delay of 32-bit ripple-carry, carry-lookahead, 
and prefix adders.  The carry-lookahead adder has 4-bit 
blocks. Assume that each two-input gate delay is 100 ps and 
the full adder delay is 300 ps.

Adder Delay Comparisons
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Subtracter

Symbol Implementation
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Comparator: Equality

Symbol Implementation
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Comparator: Less Than
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• For unsigned numbers
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Arithmetic Logic Unit (ALU)
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ALU Design
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Set Less Than (SLT) Example

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend

• Configure a 32-bit ALU for the 
set if less than (SLT) operation.  
Suppose A = 25 and B = 32.
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Set Less Than (SLT) Example
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• Configure a 32-bit ALU for the 
set if less than (SLT) operation.  
Suppose A = 25 and B = 32.
– Because A is indeed less than B, 

we expect Y to be the 32-bit 
representation of 1 
(0x00000001).

– For SLT, F2:0 = 111.
– F2 = 1 configures the adder unit 

as a subtracter. So 25 - 32 = -7.
– The two’s complement 

representation of -7 has a 1 in the 
most significant bit, so S31 = 1.

– With F1:0 = 11, the final 
multiplexer selects Y = S31 = 1. 
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Shifters

• Logical shifter: shifts value to left or right and fills empty spaces with 
0’s
– Ex: 11001 >> 2 =
– Ex: 11001 << 2 =

• Arithmetic shifter: same as logical shifter, but on right shift, fills 
empty spaces with the old most significant bit (msb).
– Ex: 11001 >>> 2 =
– Ex: 11001 <<< 2 =

• Rotator: rotates bits in a circle, such that bits shifted off one end are 
shifted into the other end
– Ex: 11001 ROR 2 =
– Ex: 11001 ROL 2 =
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Shifter Design
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Shifters as Multipliers and Dividers

• A left shift by N bits multiplies a number by 2N

– Ex: 00001 << 2  = 00100  (1 × 22 = 4)
– Ex: 11101 << 2  = 10100  (-3 × 22 = -12)

• The arithmetic right shift by N divides a number by 2N

– Ex: 01000 >>> 2 = 00010  (8 ÷ 22 = 2)
– Ex: 10000 >>> 2 = 11100  (-16 ÷ 22 = -4)

Copyright © 2007 Elsevier 5-<32>

Multipliers

• Steps of multiplication for both decimal and binary 
numbers:
– Partial products are formed by multiplying a single digit of the

multiplier with the entire multiplicand
– Shifted partial products are summed to form the result

Decimal Binary
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5 x 7 = 35

460
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9660
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0101
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x

+
0100011

230 x 42 = 9660

multiplier
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partial
products

result
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4 x 4 Multiplier
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Division Algorithm

• Q = A/B
• R: remainder
• D: difference

R = A
for i = N-1 to 0

D = R - B
if D < 0 then Qi = 0, R’ = R // R < B
else               Qi = 1, R’ = D // R ≥ B
R = 2R’
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4 x 4 Divider
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Number Systems

• What kind of numbers do you know how to represent using 
binary representations?
– Positive numbers

• Unsigned binary
– Negative numbers

• Two’s complement
• Sign/magnitude numbers

• What about fractions?
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Numbers with Fractions

• Two common notations:
– Fixed-point: 

the binary point is fixed
– Floating-point:

the binary point floats to the right of the most significant 1
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Fixed-Point Numbers

• Fixed-point representation of 6.75 using 4 integer bits and 4 
fraction bits:

• The binary point is not a part of the representation but is 
implied. 

• The number of integer and fraction bits must be agreed upon 
by those generating and those reading the number.

01101100
0110.1100
22 + 21 + 2-1 + 2-2 = 6.75
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Fixed-Point Numbers

• Ex: Represent 6.510 using an 8-bit binary representation with 
4 integer bits and 4 fraction bits.
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Signed Fixed-Point Numbers

• As with integers, negative fractional numbers can be 
represented two ways:
– Sign/magnitude notation
– Two’s complement notation

• Represent -6.510 using an 8-bit binary representation with 4 
integer bits and 4 fraction bits.
– Sign/magnitude:

– Two’s complement:
1. +6.5:
2. Invert bits: 
3. Add 1 ulp:
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Floating-Point Numbers

• The binary point floats to the right of the most significant 1.
• Similar to decimal scientific notation.
• For example, write 27310 in scientific notation:

– Move the decimal point to the left of the most significant digit and 
increase the exponent:

273 = 2.73 × 102

• In general, a number is written in scientific notation as:
± M × BE

Where, 
– M = mantissa
– B = base
– E = exponent
– In the example, M = 2.73, B = 10, and E = 2
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Floating-Point Numbers

• We represent floating-point numbers using 32 bits: 1 sign bit, 
8 exponent bits, and the remaining 23 bits for the mantissa.

• Example: represent the value 22810 using a 32-bit floating 
point representation.

• The following slides show three versions of floating-point 
representation for 22810. 

• The final version is called the IEEE 754 floating-point 
standard.

Sign Exponent Mantissa

1 bit 8 bits 23 bits
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Floating-Point Representation 1

• First, convert the decimal number to binary: 
– 22810 = 111001002 = 1.11001 × 27

• Next, fill in each field in the 32-bit number:
– The sign bit is positive (0)

– The 8 exponent bits give the value 7

– The remaining 23 bits are the mantissa

0 00000111     11 1001 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits
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Floating-Point Representation 2

• You may have noticed that the first bit of the mantissa is 
always 1, since the binary point floats to the right of the most
significant 1:
– 22810 = 111001002 = 1.11001 × 27

• Thus, storing the most significant 1, also called the implicit 
leading 1, is redundant information.

• We can store just the fraction bits in the 23-bit field. The 
leading 1 is implied.

0 00000011     110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits
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Floating-Point Representation 3

• The final change is to store a biased exponent. The IEEE 754 
standard uses a bias of 127.  
– Biased exponent = bias + exponent

– For example, an exponent of 7 would be stored as:

127 + 7 = 134 = 0x100001102

• Thus, the IEEE 754 32-bit floating-point representation of 
22810 is:

0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits
    110 0100 0000 0000 0000 0000
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Floating-Point Example

• Write the value -58.2510 using the IEEE 754 32-bit floating-
point standard.

• First, convert the decimal number to binary: 

– 58.2510 =

• Next, fill in each field in the 32-bit number:

– The sign bit is

– The 8 exponent bits

– The remaining 23 bits are the fraction bits:

• Written in hexadecimal, this 32-bit value is:

Sign Exponent Fraction

1 bit 8 bits 23 bits
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Floating-Point Numbers: Special Cases

• The IEEE 754 standard includes special cases for numbers 
that are difficult to represent, such as 0 because it lacks an 
implicit leading 1.

NaN is used for numbers that don’t exist, such as √-1 or log(-5).

NaN

- ∞

∞

0

Number

X

1

0

X

Sign

0000000000000000000000000000000

0000000000000000000000011111111

0000000000000000000000011111111

non-zero11111111

FractionExponent
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Floating-Point Number Precision

• Single-Precision:
– 32-bit notation
– 1 sign bit, 8 exponent bits, 23 fraction bits
– bias = 127

• Double-Precision:
– 64-bit notation
– 1 sign bit, 11 exponent bits, 52 fraction bits
– bias = 1023
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Floating-Point Numbers: Rounding

• Overflow: when the number is too large to be represented
• Underflow: when the number is too small to be represented
• Rounding modes: 

– Down
– Up
– Toward zero
– To nearest

• Example: round 1.100101 (1.578125) so that it uses only 3 
fraction bits.
– Down: 1.100
– Up: 1.101
– Toward zero: 1.100
– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)
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Floating-Point Addition

1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point 

format
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Floating-Point Addition: Example

Add the following floating-point numbers:
0x3FC00000
0x40500000
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Floating-Point Addition: Example

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1
For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa
N1: 1.1
N2: 1.101

0 01111111     100 0000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000     101 0000 0000 0000 0000 0000
1 bit 8 bits 23 bits

Sign Exponent Fraction
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Floating-Point Addition: Example

3. Compare exponents
127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary
shift N1’s mantissa: 1.1 >> 1 = 0.11  (× 21)

5. Add mantissas
0.11   × 21

+ 1.101 × 21

10.011 × 21
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Floating-Point Addition: Example

6. Normalize mantissa and adjust exponent if necessary
10.011 × 21 = 1.0011 × 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point 
format
S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

Written in hexadecimal: 0x40980000

0 10000001     001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits
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Counters

• Increments on each clock edge.
• Used to cycle through numbers. For example, 

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Counters are used in many digital systems, for example:
– Digital clock displays
– Program counter: used in computers to keep track of the current 

instruction that is executing

Q

CLK

Reset
N

+ N

1

CLK

Reset

N

N
QN

r

Symbol Implementation
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Shift Register

NQ

Sin Sout

Symbol: Implementation:
CLK

Sin Sout

Q0 Q1 QN-1Q2

• Shift a new value in on each clock edge
• Shift a value out on each clock edge
• Serial-to-parallel converter: converts serial input (Sin) to 

parallel output (Q0:N-1)
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Shift Register with Parallel Load

Clk
0
1

0
1

0
1

0
1

D0 D1 DN-1D2

Q0 Q1 QN-1Q2

Sin Sout

Load

• When Load = 1, acts as a normal N-bit register
• When Load = 0, acts as a shift register
• Now can act as a serial-to-parallel converter (Sin to Q0:N-1) or 

a parallel-to-serial converter (D0:N-1 to Sout)
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Memory Arrays

Address

Data

ArrayN

M

• Memory arrays efficiently store large amounts of data.
• Three common types of memory arrays:

– Dynamic random access memory (DRAM)
– Static random access memory (SRAM)
– Read only memory (ROM)

• An M-bit data value can be read or written at each unique N-
bit address.
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• Memory arrays are organized as a two-dimensional array of 
bit cells.  Each bit cell stores one bit.

• An array with N address bits and M data bits has 2N rows and 
M columns. Each row of data is called a word.
– Depth: number of rows in a memory array
– Width: number of columns in a memory array (the word size)
– Array size is given as depth × width

Memory Arrays

Address

Data

ArrayN

M

Address Data
11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3
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• The memory array below is a 22 × 3-bit array.
• The word size is 3-bits.
• For example, the 3-bit word stored at address 10 is 100.

Memory Array: Example

Example: Address Data
11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3
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Memory Arrays

Address

Data

1024-word x
32-bit
Array

10

32
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Memory Array Bit Cells

Example:
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• The wordline, similar to an enable, allows a single row in the memory 
array to be read or written at once.

• Each wordline corresponds to a unique address – only one wordline is 
HIGH at any given time

Memory Array

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2
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Types of Memory

• Random access memory (RAM): volatile
• Read only memory (ROM): nonvolatile
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RAM

• Random access memory
– Volatile: loses its data when the power is turned off
– Can be read and written quickly
– Main memory in your computer is RAM (specifically, 

DRAM)
– Historically called random access memory because any 

data word can be accessed as easily as any other (in 
contrast to sequential access memories such as a tape 
recorder).

Copyright © 2007 Elsevier 5-<70>

Types of Memory

• Read only memory (ROM)
– Nonvolatile: retains its data when power is turned off
– Can be read quickly, but writing is impossible or slow
– Flash memory in cameras, thumb drives, and digital 

cameras are all ROMs
– Historically called read only memory because ROMs 

were written at manufacturing time or by burning fuses. 
Once ROM was configured, it could not be written again. 
This is no longer the case for Flash.
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Types of RAM

• The two main types of RAM are:
– Dynamic random access memory (DRAM)
– Static random access memory (SRAM)

• They differ in how they store data:
– DRAM uses a capacitor
– SRAM uses cross-coupled inverters
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Robert Dennard, 1932 -

• Invented DRAM in 1966 
at IBM

• Others were skeptical that 
the idea would work

• By the mid-1970’s 
DRAM was in virtually 
all computers
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• Data bits are stored on a capacitor.
• DRAM is called dynamic because the value needs to be 

refreshed (rewritten) periodically and after being read 
because:
– Charge leakage from the capacitor degrades the value
– Reading destroys the stored value

DRAM

wordline

bitline

stored
bit
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DRAM

wordline

bitline

wordline

bitline

+ +stored
bit = 1

stored
bit = 0
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SRAM

wordline
bitline bitline
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ROMs
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Fujio Masuoka, 1944-

• Developed memories and high speed 
circuits at Toshiba from 1971-1994. 

• Invented Flash memory as an 
unauthorized project pursued during 
nights and weekends in the late 
1970’s. 

• The process of erasing the memory 
reminded him of the flash of a 
camera 

• Toshiba slow to commercialize the 
idea; Intel was first to market in 1988 

• Flash has grown into a $25 billion 
per year market.
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ROM Storage

Address Data
11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width
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ROM Logic

Data2 = A1 ⊕ A0

Data1 = A1 + A0

Data0 = A1A0
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Example: Logic with ROMs

• Implement the following logic functions using a 22 × 3-bit 
ROM:
– X = AB
– Y = A + B
– Z = AB
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Logic with Memory Arrays
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Logic with Memory Arrays

• Implement the following logic functions using a 22 × 3-bit 
memory array:
– X = AB
– Y = A + B
– Z = AB
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Logic with Memory Arrays

• Memory arrays used to perform logic are called lookup tables 
(LUTs).

• The user looks up the value of the output at each input 
combination (address).
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Multi-ported Memories

A1

A3
WD3

WE3

A2

CLK

Array

RD2
RD1 M

M
N
N

N
M

• Port: address/data pair
• 3-ported memory

– 2 read ports (A1/RD1, A2/RD2)
– 1 write port (A3/WD3, WE3 enables writing)

• Small multi-ported memories are called register files
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// 256 x 3 memory module with one read/write port
module dmem( input           clk, we,

input  [7:0]    a
input  [2:0]    wd,
output [2:0]    rd);

reg [2:0] RAM[255:0];

assign rd = RAM[a];

always @(posedge clk)
if (we)

RAM[a] <= wd;

endmodule

Verilog Memory Arrays
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Logic Arrays

• Programmable logic arrays (PLAs)
– AND array followed by OR array
– Perform combinational logic only
– Fixed internal connections

• Field programmable gate arrays (FPGAs)
– Array of configurable logic blocks (CLBs)
– Perform combinational and sequential logic
– Programmable internal connections
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PLAs

X Y

A B C

AND ARRAY

OR ARRAY

ABC

AB

ABC

• X = ABC + ABC
• Y = AB

AND
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Inputs

Outputs

Implicants
N

M

P
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PLAs
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AND ARRAY
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FPGAs

• Composed of:
– CLBs (Configurable logic blocks): to perform logic
– IOBs (Input/output buffers): to interface with outside world
– Programmable interconnection: to connect CLBs and IOBs
– Some FPGAs include other building blocks such as multipliers and

RAMs
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Xilinx Spartan 3 FPGA Schematic
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CLBs

• Composed of:
– LUTs (lookup tables): to perform combinational logic
– Flip-flops: to perform sequential functions
– Multiplexers: to connect LUTs and flip-flops
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Xilinx Spartan CLB
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Xilinx Spartan CLB

• The Spartan CLB has:
– 3 LUTs: 

• F-LUT (24 x 1-bit LUT)
• G-LUT (24 x 1-bit LUT)
• H-LUT (23 x 1-bit LUT)

– 2 registered outputs: 
• XQ
• YQ

– 2 combinational outputs: 
• X
• Y
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CLB Configuration Example

• Show how to configure the Spartan CLB to perform the 
following functions:
– X = ABC + ABC
– Y = AB
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CLB Configuration Example

• Show how to configure the Spartan CLB to perform the 
following functions:
– X = ABC + ABC
– Y = AB
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FPGA Design Flow

• A CAD tool (such as Xilinx Project Navigator) is used to 
design and implement a digital system.

• The user enters the design using schematic entry or an HDL.
• The user simulates the design.
• A synthesis tool converts the code into hardware and maps it 

onto the FPGA.
• The user uses the CAD tool to download the configuration

onto the FPGA
• This configures the CLBs and the connections between them 

and the IOBs.


