
1

Copyright © 2007 Elsevier 5-<1>

Chapter 5 :: Digital Building Blocks

Digital Design and Computer Architecture
David Money Harris and Sarah L. Harris

Copyright © 2007 Elsevier 5-<2>

Chapter 5 :: Topics

• Introduction
• Arithmetic Circuits
• Number Systems
• Sequential Building Blocks
• Memory Arrays
• Logic Arrays

Copyright © 2007 Elsevier 5-<3>

Introduction

• Digital building blocks include:
– Gates, multiplexers, decoders, registers, arithmetic circuits,

counters, memory arrays, logic arrays

• Building blocks are important in their own right and they
demonstrate hierarchy, modularity, and regularity:
– They are built from a hierarchy of simpler components.
– They have well-defined interfaces and functions.
– Their regular structure is easily extended to different sizes.

• We’ll use many of these building blocks to build a
microprocessor in Chapter 7

Copyright © 2007 Elsevier 5-<4>

1-Bit Adders

A B
0 0
0 1
1 0
1 1

SCout

S =
Cout =

Half
Adder
A B

S

Cout +

A B
0 0
0 1
1 0
1 1

SCout

S =
Cout =

Full
Adder

Cin

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

A B

S

Cout Cin+

2

Copyright © 2007 Elsevier 5-<7>

Multibit Adder, also called CPA

A B

S

Cout Cin+
N

NN

• Several types of carry propagate adders (CPAs) are:
– Ripple-carry adders (slow)
– Carry-lookahead adders (fast)
– Prefix adders (faster)

• Carry-lookahead and prefix adders are faster for large adders
but require more hardware.

Symbol

Copyright © 2007 Elsevier 5-<8>

• Chain 1-bit adders together
• Carry ripples through entire chain
• Disadvantage: slow

Ripple-Carry Adder

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0

C30 C29 C1 C0

Cout ++++

A31 B31

Cin

Copyright © 2007 Elsevier 5-<9>

• The delay of an N-bit ripple-carry adder is:
tripple = NtFA

where tFA is the delay of a full adder

Ripple-Carry Adder Delay

Copyright © 2007 Elsevier 5-<10>

• Computes the carry out (Cout) for N-bit blocks first, so the
carry doesn’t have to ripple through the entire chain.

• Does this by computing generate (G) and propagate (P)
signals for columns and then N-bit blocks.

• A column (bit i) can produce a carry out by either generating a
carry out or propagating a carry in to the carry out.

• We define generate (Gi) and propagate (Pi) signals for each
column:
– A column will generate a carry out if Ai AND Bi are both 1.

Gi = Ai Bi

– A column will propagate a carry in to the carry out if Ai OR Bi is 1.
Pi = Ai + Bi

• We compute the carry out of a column (Ci) as:
Ci = Ai Bi + (Ai + Bi)Ci-1 = Gi + Pi Ci-1

Carry-Lookahead Adder

3

Copyright © 2007 Elsevier 5-<11>

• Now we compute generate and propagate signals for N-bit
blocks.

• For example, we can calculate generate and propagate
signals for a 4-bit block (G3:0 and P3:0) :
– A 4-bit block will generate a carry out if column 3 generates a carry

(G3) or if column 3 propagates a carry (P3) that was generated or
propagated in a previous column as described by the following
equation:

G3:0 = G3 + P3 (G2 + P2 (G1 + P1G0)
– A 4-bit block will propagate a carry in to the carry out if all of the

columns propagate the carry:
P3:0 = P3P2 P1P0

• We compute the carry out of the 4-bit block (Ci) as:
Ci = Gi:j + Pi:j Ci-1

Carry-Lookahead Adder

Copyright © 2007 Elsevier 5-<12>

32-bit CLA with 4-bit blocks

B0

++++

P3:0

G3
P3
G2
P2
G1
P1
G0

P3
P2
P1
P0

G3:0

Cin

Cout

A0

S0

C0

B1 A1

S1

C1

B2 A2

S2

C2

B3 A3

S3

Cin

A3:0B3:0

S3:0

4-bit CLA
Block Cin

A7:4B7:4

S7:4

4-bit CLA
Block

C3C7

A27:24B27:24

S27:24

4-bit CLA
Block

C23

A31:28B31:28

S31:28

4-bit CLA
Block

C27Cout

Copyright © 2007 Elsevier 5-<13>

• The delay of an N-bit carry-lookahead adder with k-bit blocks
is:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

where
– tpg is the delay of the column generate and propagate gates
– tpg_block is the delay of the block generate and propagate gates
– tAND_OR is the delay from Cin to Cout of the final AND/OR gate in the

k-bit CLA block

• The delay of an N-bit carry-lookahead adder is generally
much faster than a ripple-carry adder for N > 16

Carry-Lookahead Adder Delay

Copyright © 2007 Elsevier 5-<14>

Prefix Adder

• Computes generate and propagate signals for all of the
columns to perform addition even faster.

• Computes G and P for 2-bit blocks, then 4-bit blocks, then
8-bit blocks, etc. until the generate and propagate signals are
known for each column.

• Thus, the prefix adder has log2N stages.
• The strategy is to compute the carry in (Ci-1) for each of the

columns as fast as possible and then to compute the sum:

Si = (Ai ⊕ Bi) ⊕ Ci-1

4

Copyright © 2007 Elsevier 5-<15>

Prefix Adder

• A carry is generated by being either generated in a column
or propagated from a previous column.

• Define column -1 to hold Cin, so
G-1 = Cin, P-1 = 0

• Then,
Ci-1 = Gi-1:-1

because there will be a carry out of column i-1 if the block
spanning columns i-1 through -1 generates a carry.

• Thus, we can rewrite the sum equation as:
Si = (Ai ⊕ Bi) ⊕ Gi-1:-1 = Pi ⊕ Gi-1:-1

• Goal:
– Quickly compute G0:-1, G1:-1, G2:-1, G3:-1, G4:-1, G5:-1, …
– These are called the prefixes

Copyright © 2007 Elsevier 5-<16>

Prefix Adder

• The generate and propagate signals for a block spanning bits
i:j are:

Gi:j = Gi:k + Pi:k Gk-1:j

Pi:j = Pi:kPk-1:j

• In words, these prefixes describe that:
– A block will generate a carry if the upper part (i:k) generates a carry

or of the upper part propagates a carry generated in the lower part
(k-1:j)

– A block will propagate a carry if both the upper and lower parts
propagate the carry.

Copyright © 2007 Elsevier 5-<17>

Prefix Adder Schematic

0:-1

-1

2:1

1:-12:-1

012

4:3

3

6:5

5:36:3

456

5:-16:-1 3:-14:-1

8:7

7

10:9

9:710:7

8910

12:11

11

14:13

13:1114:11

121314

13:714:7 11:712:7

9:-110:-1 7:-18:-113:-114:-1 11:-112:-1

15

0123456789101112131415

BiAi

Gi:iPi:i

Gk-1:jPk-1:jGi:kPi:k

Gi:jPi:j

i
i:j

BiAiGi-1:-1

Si

iLegend

Copyright © 2007 Elsevier 5-<18>

• The delay of an N-bit prefix adder is:
tPA = tpg + log2N(tpg_prefix) + tXOR

where
– tpg is the delay of the column generate and propagate gates
– tpg_prefix is the delay of the black prefix cell (AND-OR gate)

Prefix Adder Delay

5

Copyright © 2007 Elsevier 5-<19>

• Compare the delay of 32-bit ripple-carry, carry-lookahead,
and prefix adders. The carry-lookahead adder has 4-bit
blocks. Assume that each two-input gate delay is 100 ps and
the full adder delay is 300 ps.

Adder Delay Comparisons

Copyright © 2007 Elsevier 5-<21>

Subtracter

Symbol Implementation

+

A B

-

Y
Y

A B

NN

N

N N

N

N

Copyright © 2007 Elsevier 5-<22>

Comparator: Equality

Symbol Implementation
A3
B3

A2
B2

A1
B1

A0
B0

Equal=

A B

Equal

44

Copyright © 2007 Elsevier 5-<23>

Comparator: Less Than

A < B

-

BA

[N-1]

N

N N

• For unsigned numbers

6

Copyright © 2007 Elsevier 5-<24>

Arithmetic Logic Unit (ALU)

ALU

N N

N
3

A B

Y

F

A & B000
A | B001
A + B010
not used011
A & B100
A | ~B101
A - B110
SLT111

FunctionF2:0

Copyright © 2007 Elsevier 5-<25>

ALU Design

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend

A & B000

A | B001

A + B010

not used011

A & B100

A | ~B101

A - B110

SLT111

FunctionF2:0

Copyright © 2007 Elsevier 5-<26>

Set Less Than (SLT) Example

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend

• Configure a 32-bit ALU for the
set if less than (SLT) operation.
Suppose A = 25 and B = 32.

Copyright © 2007 Elsevier 5-<27>

Set Less Than (SLT) Example

+

2 01

A B

Cout

Y

3

01

F2

F1:0

[N-1] S

NN

N

N

N NNN

N

2

Zero
Extend

• Configure a 32-bit ALU for the
set if less than (SLT) operation.
Suppose A = 25 and B = 32.
– Because A is indeed less than B,

we expect Y to be the 32-bit
representation of 1
(0x00000001).

– For SLT, F2:0 = 111.
– F2 = 1 configures the adder unit

as a subtracter. So 25 - 32 = -7.
– The two’s complement

representation of -7 has a 1 in the
most significant bit, so S31 = 1.

– With F1:0 = 11, the final
multiplexer selects Y = S31 = 1.

7

Copyright © 2007 Elsevier 5-<28>

Shifters

• Logical shifter: shifts value to left or right and fills empty spaces with
0’s
– Ex: 11001 >> 2 =
– Ex: 11001 << 2 =

• Arithmetic shifter: same as logical shifter, but on right shift, fills
empty spaces with the old most significant bit (msb).
– Ex: 11001 >>> 2 =
– Ex: 11001 <<< 2 =

• Rotator: rotates bits in a circle, such that bits shifted off one end are
shifted into the other end
– Ex: 11001 ROR 2 =
– Ex: 11001 ROL 2 =

Copyright © 2007 Elsevier 5-<30>

Shifter Design

A3:0 Y3:0

shamt1:0

>>

2

4 4

A3 A2 A1 A0

Y3

Y2

Y1

Y0

shamt1:0

00

01

10

11

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

2

Copyright © 2007 Elsevier 5-<31>

Shifters as Multipliers and Dividers

• A left shift by N bits multiplies a number by 2N

– Ex: 00001 << 2 = 00100 (1 × 22 = 4)
– Ex: 11101 << 2 = 10100 (-3 × 22 = -12)

• The arithmetic right shift by N divides a number by 2N

– Ex: 01000 >>> 2 = 00010 (8 ÷ 22 = 2)
– Ex: 10000 >>> 2 = 11100 (-16 ÷ 22 = -4)

Copyright © 2007 Elsevier 5-<32>

Multipliers

• Steps of multiplication for both decimal and binary
numbers:
– Partial products are formed by multiplying a single digit of the

multiplier with the entire multiplicand
– Shifted partial products are summed to form the result

Decimal Binary
230

42x
0101
0111

5 x 7 = 35

460
920+
9660

0101
0101

0101
0000

x

+
0100011

230 x 42 = 9660

multiplier
multiplicand

partial
products

result

8

Copyright © 2007 Elsevier 5-<33>

4 x 4 Multiplier

x

x

A B

P

B3 B2 B1 B0

A3B0 A2B0 A1B0 A0B0

A3 A2 A1 A0

 A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B3 A2B3 A1B3 A0B3+
P7 P6 P5 P4 P3 P2 P1 P0

0

P2

0

0

0

P1 P0P5 P4 P3P7 P6

A3 A2 A1 A0

B0B1

B2

B3

44

8

Copyright © 2007 Elsevier 5-<34>

Division Algorithm

• Q = A/B
• R: remainder
• D: difference

R = A
for i = N-1 to 0

D = R - B
if D < 0 then Qi = 0, R’ = R // R < B
else Qi = 1, R’ = D // R ≥ B
R = 2R’

Copyright © 2007 Elsevier 5-<35>

4 x 4 Divider

Copyright © 2007 Elsevier 5-<36>

Number Systems

• What kind of numbers do you know how to represent using
binary representations?
– Positive numbers

• Unsigned binary
– Negative numbers

• Two’s complement
• Sign/magnitude numbers

• What about fractions?

9

Copyright © 2007 Elsevier 5-<37>

Numbers with Fractions

• Two common notations:
– Fixed-point:

the binary point is fixed
– Floating-point:

the binary point floats to the right of the most significant 1

Copyright © 2007 Elsevier 5-<38>

Fixed-Point Numbers

• Fixed-point representation of 6.75 using 4 integer bits and 4
fraction bits:

• The binary point is not a part of the representation but is
implied.

• The number of integer and fraction bits must be agreed upon
by those generating and those reading the number.

01101100
0110.1100
22 + 21 + 2-1 + 2-2 = 6.75

Copyright © 2007 Elsevier 5-<39>

Fixed-Point Numbers

• Ex: Represent 6.510 using an 8-bit binary representation with
4 integer bits and 4 fraction bits.

Copyright © 2007 Elsevier 5-<41>

Signed Fixed-Point Numbers

• As with integers, negative fractional numbers can be
represented two ways:
– Sign/magnitude notation
– Two’s complement notation

• Represent -6.510 using an 8-bit binary representation with 4
integer bits and 4 fraction bits.
– Sign/magnitude:

– Two’s complement:
1. +6.5:
2. Invert bits:
3. Add 1 ulp:

10

Copyright © 2007 Elsevier 5-<44>

Floating-Point Numbers

• The binary point floats to the right of the most significant 1.
• Similar to decimal scientific notation.
• For example, write 27310 in scientific notation:

– Move the decimal point to the left of the most significant digit and
increase the exponent:

273 = 2.73 × 102

• In general, a number is written in scientific notation as:
± M × BE

Where,
– M = mantissa
– B = base
– E = exponent
– In the example, M = 2.73, B = 10, and E = 2

Copyright © 2007 Elsevier 5-<45>

Floating-Point Numbers

• We represent floating-point numbers using 32 bits: 1 sign bit,
8 exponent bits, and the remaining 23 bits for the mantissa.

• Example: represent the value 22810 using a 32-bit floating
point representation.

• The following slides show three versions of floating-point
representation for 22810.

• The final version is called the IEEE 754 floating-point
standard.

Sign Exponent Mantissa

1 bit 8 bits 23 bits

Copyright © 2007 Elsevier 5-<46>

Floating-Point Representation 1

• First, convert the decimal number to binary:
– 22810 = 111001002 = 1.11001 × 27

• Next, fill in each field in the 32-bit number:
– The sign bit is positive (0)

– The 8 exponent bits give the value 7

– The remaining 23 bits are the mantissa

0 00000111 11 1001 0000 0000 0000 0000
Sign Exponent Mantissa

1 bit 8 bits 23 bits

Copyright © 2007 Elsevier 5-<47>

Floating-Point Representation 2

• You may have noticed that the first bit of the mantissa is
always 1, since the binary point floats to the right of the most
significant 1:
– 22810 = 111001002 = 1.11001 × 27

• Thus, storing the most significant 1, also called the implicit
leading 1, is redundant information.

• We can store just the fraction bits in the 23-bit field. The
leading 1 is implied.

0 00000011 110 0100 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

11

Copyright © 2007 Elsevier 5-<48>

Floating-Point Representation 3

• The final change is to store a biased exponent. The IEEE 754
standard uses a bias of 127.
– Biased exponent = bias + exponent

– For example, an exponent of 7 would be stored as:

127 + 7 = 134 = 0x100001102

• Thus, the IEEE 754 32-bit floating-point representation of
22810 is:

0 10000110
Sign Biased

Exponent
Fraction

1 bit 8 bits 23 bits
 110 0100 0000 0000 0000 0000

Copyright © 2007 Elsevier 5-<49>

Floating-Point Example

• Write the value -58.2510 using the IEEE 754 32-bit floating-
point standard.

• First, convert the decimal number to binary:

– 58.2510 =

• Next, fill in each field in the 32-bit number:

– The sign bit is

– The 8 exponent bits

– The remaining 23 bits are the fraction bits:

• Written in hexadecimal, this 32-bit value is:

Sign Exponent Fraction

1 bit 8 bits 23 bits

Copyright © 2007 Elsevier 5-<51>

Floating-Point Numbers: Special Cases

• The IEEE 754 standard includes special cases for numbers
that are difficult to represent, such as 0 because it lacks an
implicit leading 1.

NaN is used for numbers that don’t exist, such as √-1 or log(-5).

NaN

- ∞

∞

0

Number

X

1

0

X

Sign

0000000000000000000000000000000

0000000000000000000000011111111

0000000000000000000000011111111

non-zero11111111

FractionExponent

Copyright © 2007 Elsevier 5-<52>

Floating-Point Number Precision

• Single-Precision:
– 32-bit notation
– 1 sign bit, 8 exponent bits, 23 fraction bits
– bias = 127

• Double-Precision:
– 64-bit notation
– 1 sign bit, 11 exponent bits, 52 fraction bits
– bias = 1023

12

Copyright © 2007 Elsevier 5-<53>

Floating-Point Numbers: Rounding

• Overflow: when the number is too large to be represented
• Underflow: when the number is too small to be represented
• Rounding modes:

– Down
– Up
– Toward zero
– To nearest

• Example: round 1.100101 (1.578125) so that it uses only 3
fraction bits.
– Down: 1.100
– Up: 1.101
– Toward zero: 1.100
– To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Copyright © 2007 Elsevier 5-<54>

Floating-Point Addition

1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point

format

Copyright © 2007 Elsevier 5-<55>

Floating-Point Addition: Example

Add the following floating-point numbers:
0x3FC00000
0x40500000

Copyright © 2007 Elsevier 5-<56>

Floating-Point Addition: Example

1. Extract exponent and fraction bits

For first number (N1): S = 0, E = 127, F = .1
For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa
N1: 1.1
N2: 1.101

0 01111111 100 0000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

0 10000000 101 0000 0000 0000 0000 0000
1 bit 8 bits 23 bits

Sign Exponent Fraction

13

Copyright © 2007 Elsevier 5-<57>

Floating-Point Addition: Example

3. Compare exponents
127 – 128 = -1, so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary
shift N1’s mantissa: 1.1 >> 1 = 0.11 (× 21)

5. Add mantissas
0.11 × 21

+ 1.101 × 21

10.011 × 21

Copyright © 2007 Elsevier 5-<58>

Floating-Point Addition: Example

6. Normalize mantissa and adjust exponent if necessary
10.011 × 21 = 1.0011 × 22

7. Round result
No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point
format
S = 0, E = 2 + 127 = 129 = 100000012, F = 001100..

Written in hexadecimal: 0x40980000

0 10000001 001 1000 0000 0000 0000 0000
Sign Exponent Fraction

1 bit 8 bits 23 bits

Copyright © 2007 Elsevier 5-<59>

Counters

• Increments on each clock edge.
• Used to cycle through numbers. For example,

– 000, 001, 010, 011, 100, 101, 110, 111, 000, 001…

• Counters are used in many digital systems, for example:
– Digital clock displays
– Program counter: used in computers to keep track of the current

instruction that is executing

Q

CLK

Reset
N

+ N

1

CLK

Reset

N

N
QN

r

Symbol Implementation

Copyright © 2007 Elsevier 5-<60>

Shift Register

NQ

Sin Sout

Symbol: Implementation:
CLK

Sin Sout

Q0 Q1 QN-1Q2

• Shift a new value in on each clock edge
• Shift a value out on each clock edge
• Serial-to-parallel converter: converts serial input (Sin) to

parallel output (Q0:N-1)

14

Copyright © 2007 Elsevier 5-<61>

Shift Register with Parallel Load

Clk
0
1

0
1

0
1

0
1

D0 D1 DN-1D2

Q0 Q1 QN-1Q2

Sin Sout

Load

• When Load = 1, acts as a normal N-bit register
• When Load = 0, acts as a shift register
• Now can act as a serial-to-parallel converter (Sin to Q0:N-1) or

a parallel-to-serial converter (D0:N-1 to Sout)

Copyright © 2007 Elsevier 5-<62>

Memory Arrays

Address

Data

ArrayN

M

• Memory arrays efficiently store large amounts of data.
• Three common types of memory arrays:

– Dynamic random access memory (DRAM)
– Static random access memory (SRAM)
– Read only memory (ROM)

• An M-bit data value can be read or written at each unique N-
bit address.

Copyright © 2007 Elsevier 5-<63>

• Memory arrays are organized as a two-dimensional array of
bit cells. Each bit cell stores one bit.

• An array with N address bits and M data bits has 2N rows and
M columns. Each row of data is called a word.
– Depth: number of rows in a memory array
– Width: number of columns in a memory array (the word size)
– Array size is given as depth × width

Memory Arrays

Address

Data

ArrayN

M

Address Data
11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

Copyright © 2007 Elsevier 5-<64>

• The memory array below is a 22 × 3-bit array.
• The word size is 3-bits.
• For example, the 3-bit word stored at address 10 is 100.

Memory Array: Example

Example: Address Data
11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Address

Data

Array2

3

15

Copyright © 2007 Elsevier 5-<65>

Memory Arrays

Address

Data

1024-word x
32-bit
Array

10

32

Copyright © 2007 Elsevier 5-<66>

Memory Array Bit Cells

Example:

Copyright © 2007 Elsevier 5-<67>

• The wordline, similar to an enable, allows a single row in the memory
array to be read or written at once.

• Each wordline corresponds to a unique address – only one wordline is
HIGH at any given time

Memory Array

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Copyright © 2007 Elsevier 5-<68>

Types of Memory

• Random access memory (RAM): volatile
• Read only memory (ROM): nonvolatile

16

Copyright © 2007 Elsevier 5-<69>

RAM

• Random access memory
– Volatile: loses its data when the power is turned off
– Can be read and written quickly
– Main memory in your computer is RAM (specifically,

DRAM)
– Historically called random access memory because any

data word can be accessed as easily as any other (in
contrast to sequential access memories such as a tape
recorder).

Copyright © 2007 Elsevier 5-<70>

Types of Memory

• Read only memory (ROM)
– Nonvolatile: retains its data when power is turned off
– Can be read quickly, but writing is impossible or slow
– Flash memory in cameras, thumb drives, and digital

cameras are all ROMs
– Historically called read only memory because ROMs

were written at manufacturing time or by burning fuses.
Once ROM was configured, it could not be written again.
This is no longer the case for Flash.

Copyright © 2007 Elsevier 5-<71>

Types of RAM

• The two main types of RAM are:
– Dynamic random access memory (DRAM)
– Static random access memory (SRAM)

• They differ in how they store data:
– DRAM uses a capacitor
– SRAM uses cross-coupled inverters

Copyright © 2007 Elsevier 5-<72>

Robert Dennard, 1932 -

• Invented DRAM in 1966
at IBM

• Others were skeptical that
the idea would work

• By the mid-1970’s
DRAM was in virtually
all computers

17

Copyright © 2007 Elsevier 5-<73>

• Data bits are stored on a capacitor.
• DRAM is called dynamic because the value needs to be

refreshed (rewritten) periodically and after being read
because:
– Charge leakage from the capacitor degrades the value
– Reading destroys the stored value

DRAM

wordline

bitline

stored
bit

Copyright © 2007 Elsevier 5-<74>

DRAM

wordline

bitline

wordline

bitline

+ +stored
bit = 1

stored
bit = 0

Copyright © 2007 Elsevier 5-<75>

SRAM

wordline
bitline bitline

Copyright © 2007 Elsevier 5-<76>

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Memory Arrays

wordline
bitline bitline

wordline

bitline
DRAM bit cell: SRAM bit cell:

18

Copyright © 2007 Elsevier 5-<77>

ROMs

wordline

bitline

wordline

bitline

bit cell
containing 0

bit cell
containing 1

Copyright © 2007 Elsevier 5-<78>

Fujio Masuoka, 1944-

• Developed memories and high speed
circuits at Toshiba from 1971-1994.

• Invented Flash memory as an
unauthorized project pursued during
nights and weekends in the late
1970’s.

• The process of erasing the memory
reminded him of the flash of a
camera

• Toshiba slow to commercialize the
idea; Intel was first to market in 1988

• Flash has grown into a $25 billion
per year market.

Copyright © 2007 Elsevier 5-<79>

ROM Storage

Address Data
11

10

01

00

depth

0 1 0

1 0 0

1 1 0

0 1 1

width

Copyright © 2007 Elsevier 5-<80>

ROM Logic

Data2 = A1 ⊕ A0

Data1 = A1 + A0

Data0 = A1A0

19

Copyright © 2007 Elsevier 5-<81>

Example: Logic with ROMs

• Implement the following logic functions using a 22 × 3-bit
ROM:
– X = AB
– Y = A + B
– Z = AB

Copyright © 2007 Elsevier 5-<83>

Logic with Memory Arrays

wordline311

10

2:4
Decoder

Address

01

00

stored
bit = 0wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

bitline2 bitline1 bitline0

Data2 Data1 Data0

2

Data2 = A1 ⊕ A0

Data1 = A1 + A0

Data0 = A1A0

Copyright © 2007 Elsevier 5-<84>

Logic with Memory Arrays

• Implement the following logic functions using a 22 × 3-bit
memory array:
– X = AB
– Y = A + B
– Z = AB

wordline311

10

2:4
Decoder

A, B

01

00

stored
bit = 1wordline2

wordline1

wordline0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 1

stored
bit = 1

stored
bit = 0

stored
bit = 1

stored
bit = 0

stored
bit = 0

stored
bit = 0

stored
bit = 0

bitline2 bitline1 bitline0

X Y Z

2

Copyright © 2007 Elsevier 5-<85>

Logic with Memory Arrays

• Memory arrays used to perform logic are called lookup tables
(LUTs).

• The user looks up the value of the output at each input
combination (address).

stored
bit = 1

stored
bit = 0

00

01

2:4
Decoder

A

stored
bit = 0

bitline

stored
bit = 0

Y

B

10

11

4-word x 1-bit Array

A B Y
0 0
0 1
1 0
1 1

0
0
0
1

Truth
Table

A1

A0

20

Copyright © 2007 Elsevier 5-<86>

Multi-ported Memories

A1

A3
WD3

WE3

A2

CLK

Array

RD2
RD1 M

M
N
N

N
M

• Port: address/data pair
• 3-ported memory

– 2 read ports (A1/RD1, A2/RD2)
– 1 write port (A3/WD3, WE3 enables writing)

• Small multi-ported memories are called register files

Copyright © 2007 Elsevier 5-<87>

// 256 x 3 memory module with one read/write port
module dmem(input clk, we,

input [7:0] a
input [2:0] wd,
output [2:0] rd);

reg [2:0] RAM[255:0];

assign rd = RAM[a];

always @(posedge clk)
if (we)

RAM[a] <= wd;

endmodule

Verilog Memory Arrays

Copyright © 2007 Elsevier 5-<88>

Logic Arrays

• Programmable logic arrays (PLAs)
– AND array followed by OR array
– Perform combinational logic only
– Fixed internal connections

• Field programmable gate arrays (FPGAs)
– Array of configurable logic blocks (CLBs)
– Perform combinational and sequential logic
– Programmable internal connections

Copyright © 2007 Elsevier 5-<89>

PLAs

X Y

A B C

AND ARRAY

OR ARRAY

ABC

AB

ABC

• X = ABC + ABC
• Y = AB

AND
ARRAY

OR
ARRAY

Inputs

Outputs

Implicants
N

M

P

21

Copyright © 2007 Elsevier 5-<90>

PLAs

AND
ARRAY

OR
ARRAY

Inputs

Outputs

Implicants
N

M

P

X Y

ABC

AB

ABC

A B C

AND ARRAY

OR ARRAY

Copyright © 2007 Elsevier 5-<91>

FPGAs

• Composed of:
– CLBs (Configurable logic blocks): to perform logic
– IOBs (Input/output buffers): to interface with outside world
– Programmable interconnection: to connect CLBs and IOBs
– Some FPGAs include other building blocks such as multipliers and

RAMs

Copyright © 2007 Elsevier 5-<92>

Xilinx Spartan 3 FPGA Schematic

Copyright © 2007 Elsevier 5-<93>

CLBs

• Composed of:
– LUTs (lookup tables): to perform combinational logic
– Flip-flops: to perform sequential functions
– Multiplexers: to connect LUTs and flip-flops

22

Copyright © 2007 Elsevier 5-<94>

Xilinx Spartan CLB

Copyright © 2007 Elsevier 5-<95>

Xilinx Spartan CLB

• The Spartan CLB has:
– 3 LUTs:

• F-LUT (24 x 1-bit LUT)
• G-LUT (24 x 1-bit LUT)
• H-LUT (23 x 1-bit LUT)

– 2 registered outputs:
• XQ
• YQ

– 2 combinational outputs:
• X
• Y

Copyright © 2007 Elsevier 5-<96>

CLB Configuration Example

• Show how to configure the Spartan CLB to perform the
following functions:
– X = ABC + ABC
– Y = AB

Copyright © 2007 Elsevier 5-<97>

CLB Configuration Example

• Show how to configure the Spartan CLB to perform the
following functions:
– X = ABC + ABC
– Y = AB

F4
F3
F2
F1

F

F2 F1 F
0 0
0 1
1 0
1 1

0
1
0
0

F3
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
0

X
X
X
X
X
X
X
x

F4
(A) (B) (C) (X)

G2 G1 G
0 0
0 1
1 0
1 1

0
0
1
0

G3
X
X
X
X

X
X
X
X

G4
(A) (B) (Y) G4

G3
G2
G1

G0
A
B

0

A
B
C

0

Y

X

23

Copyright © 2007 Elsevier 5-<98>

FPGA Design Flow

• A CAD tool (such as Xilinx Project Navigator) is used to
design and implement a digital system.

• The user enters the design using schematic entry or an HDL.
• The user simulates the design.
• A synthesis tool converts the code into hardware and maps it

onto the FPGA.
• The user uses the CAD tool to download the configuration

onto the FPGA
• This configures the CLBs and the connections between them

and the IOBs.

