

Sequential Circuits

- give sequence to events
- have memory (short-term)
- use feedback from output to input to store information
- Some definitions:
- State: all the information about a circuit necessary to explain its future behavior
- Latches and flip-flops: state elements that store one bit of state
- Synchronous sequential circuits: combinational logic followed by a bank of flip-flops

Bistable Circuit

Fundamental building block of other state elements

- Two outputs: Q, \bar{Q}
- No inputs

Copyright © 2007 Elsevier

Bistable Circuit Analysis

- Consider the two possible cases

- Bistable circuit stores 1 bit of state in the state variable, Q (or Q)
- But there are no inputs to control the state Copright 02007 Essevier

SR Latch

- SR Latch

- Consider the four possible cases:
- $S=1, R=0$
- $S=0, R=1$
- $S=0, R=0$
- $S=1, R=1$

Copyighte 2007 Elsevier
3.88>

- $S=0, R=1$: then $Q=0$ and $\bar{Q}=1$

Copyight © 2007 Elsevier

SR Latch Symbol

- SR stands for Set/Reset Latch
- Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
- Set: Make the output 1
- Reset: Make the output 0

$$
\begin{aligned}
& \text { SR Latch } \\
& \text { Symbol }
\end{aligned}
$$

- When the set input, S, is 1 (and $R=0$), Q is set to 1
- When the reset input, R, is 1 (and $S=0$), Q is reset to 0
- Invalid state when $S=R=1$

SR Latch Analysis

Copyight 02007 Elsevier
3-<11>
$-S=0, R=0$: then $Q=Q_{\text {prev }}$

$Q_{\text {pren }}=0$	$Q_{\text {pren }}=1$
$R^{0}-{ }^{N 1} O_{-}^{0} Q$	$R 0$
s 0 N $2-\bar{Q}$	$5 0 \longdiv { N 2 }$

- $S=1, R=1$: then $Q=0$ and $\bar{Q}=0$

D Latch

- Two inputs: $C L K, D$
- CLK: controls when the output changes
- D (the data input): controls what the output changes to
- Function
- When $C L K=1, D$ passes through to Q (the latch is transparent)
- When $C L K=0, Q$ holds its previous value (the latch is opaque)
- Avoids invalid case when $Q \neq$ NOT \bar{Q}

D Latch Symbol

D Flip-Flop

- Two inputs: CLK, D
- Function
- The flip-flop "samples" D on the rising edge of $C L K$
- When CLK rises from 0 to $1, D$ passes through to Q
- Otherwise, Q holds its previous value
- Q changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered device because it is activated on the clock edge

Copyright © 2007 Elsevier

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When $C L K=0$
- L1 is transparent
- L2 is opaque
- D passes through to N1
- When $C L K=1$
- L2 is transparent

- L1 is opaque
- N1 passes through to Q
- Thus, on the edge of the clock (when CLK rises from $0 \rightarrow 1$)
- D passes through to Q

Enabled Flip-Flops

- Inputs: $C L K, D, E N$
- The enable input ($E N$) controls when new data (D) is stored
- Function
- $E N=1$
- D passes through to Q on the clock edge
- $E N=0$ Intina
- the flip-flop retains its previous state Circuit

Symbol

Resettable Flip-Flops

- Two types:
- Synchronous: resets at the clock edge only
- Asynchronous: resets immediately when Reset $=1$
- Synchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Asynchronously resettable flip-flop:

Copyighte © 2007 Elsevier
3-24>

Settable Flip-Flops

- Inputs: $C L K, D$, Set
- Funtion:
- Set = 1
- Q is set to 1
- Set $=0$
- the flip-flop behaves like an ordinary D flip-flop Symbols

Copyright © 2007 Elsevier

Sequential Logic

- Sequential circuits: all circuits that aren't combinational
- A problematic circuit:

- This circuit has no inputs and 1-3 outputs

Finite State Machine (FSM)

- Consists of:
- Breaks cyclic paths by inserting registers
- These registers contain the state of the system
- The state changes at the clock edge, so we say the system is synchronized to the clock
- Rules of synchronous sequential circuit composition:
- Every circuit element is either a register or a combinational circuit
- At least one circuit element is a register
- All registers receive the same clock signal
- Every cyclic path contains at least one register
- Two common synchronous sequential circuits
- Finite state machines (FSMs)
- Pipelines
- State register that
- Store the current state and
- Load the next state at the clock edge

- Combinational logic that
- Computes the next state
- Computes the outputs

Copyright © 2007 Elsevier

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
- Moore FSM: outputs depend only on the current state
- Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Copyight 2007 Elsevier

Finite State Machine Example

- Traffic light controller
- Traffic sensors: T_{A}, T_{B} (TRUE when there's traffic)
- Lights: L_{A}, L_{B}

Copyight © 2007 Elsevier

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

Copyight $\odot 2007$ Elsevier

FSM Encoded State Transition Table

Current State		Inputs		Next State	
S_{1}	S_{0}	T_{A}	T_{B}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S1	01
S2	10
S3	11

Copyight 2007 Elsevier

Current State				Outputs				
S_{1}	S_{0}	$L_{A 1}$	$L_{A 0}$	$L_{B 1}$	$L_{B 0}$			
0	0							
0	1							
1	0							
1	1							

Output	Encoding
green	00
yellow	01
red	10

FSM Schematic: State Register

FSM State Encoding

- Binary encoding: i.e., for four states, $00,01,10,11$
- One-hot encoding
- One state bit per state
- Only one state bit is HIGH at once
- I.e., for four states, $0001,0010,0100,1000$

Requires more flip-flops

- Often next state and output logic is simpler

Moore vs. Mealy FSM

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last four digits it has crawled over are 1101. Design Moore and Mealy FSMs of the snail's brain

State Transition Diagrams

Moore FSM

Mealy FSM: arcs indicate input/output
Mealy FSM

Copyrigh © 2007 Elsevier

Current State			
Output			
S_{2}	S_{1}	S_{0}	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	

Mealy FSM State Transition and Output Table							
Curr	State	Input	Nex	State	Output		
S_{1}	S_{0}	A	S_{1}^{\prime}	S_{0}^{\prime}	Y		
0	0	0				State	Encoding
0	0	1				S0	00
0	1	0					
0	1	1				S1	01
1	0	0				S2	10
1	0	1				S3	11
1	1	0					
1	1	1					
Copyright 2007 Elsevier							

Factoring State Machines

- Break complex FSMs into smaller interacting FSMs
- Example: Modify the traffic light controller to have a Parade Mode.
- The FSM receives two more inputs: P, R
- When $P=1$, it enters Parade Mode and the Bravado Blvd. light stays green.
- When $R=1$, it leaves Parade Mode

FSM Design Procedure

- Identify the inputs and outputs
- Sketch a state transition diagram
- Write a state transition table
- Select state encodings
- For a Moore machine:
- Rewrite the state transition table with the selected state encodings Write the output table
- For a Mealy machine:
- Rewrite the combined state transition and output table with the selected state encodings
- Write Boolean equations for the next state and output logic
- Sketch the circuit schematic

Timing

- Flip-flop samples D at clock edge
- D must be stable when it is sampled
- Similar to a photograph, D must be stable around the clock edge
- If D is changing when it is sampled, metastability can occur

Timing Analysis

Fixing Hold Time Violation	
Add buffers to the short paths: $\begin{aligned} & t_{p d}= \\ & t_{c d}= \end{aligned}$ Setup time constraint: $\begin{aligned} & T_{c} \geq \\ & f_{c}= \end{aligned}$ Copyright © 2007 Elsevier	Timing Characteristics Hold time constraint: $t_{\mathrm{ccq}}+t_{p d}>t_{\text {hold }} ?$

Setup Time Constraint with Clock Skew

- In the worst case, the CLK2 is earlier than CLK1

Flip-flop Internals

- Because the flip-flop has feedback, if Q is somewhere between 1 and 0 , the cross-coupled gates will eventually drive the output to either rail (1 or 0 , depending on which one it is closer to).

$$
\begin{aligned}
& \mathrm{N} 1 \mathrm{O}-\mathrm{Q} \\
& \mathrm{~N}-\mathrm{Q}-\overline{\mathrm{Q}}
\end{aligned}
$$

- A signal is considered metastable if it hasn't resolved to 1 or 0
- If a flip-flop input changes at a random time, the probability that the output Q is metastable after waiting some time, t, is:

$$
\mathrm{P}\left(t_{\text {res }}>t\right)=\left(T_{0} / T_{c}\right) \mathrm{e}^{-t / \tau}
$$

$$
\begin{aligned}
& t_{\text {res }}: \text { time to resolve to } 1 \text { or } 0 \\
& T_{0}, \tau: \text { properties of the circuit }
\end{aligned}
$$

Metastability

- Intuitively:
T_{0} / T_{c} describes the probability that the input changes at a bad time, i.e., during the aperture time

$$
\mathrm{P}\left(t_{\text {res }}>t\right)=\left(T_{0} / T_{c}\right) \mathrm{e}^{-t / \tau}
$$

- τ is a time constant indicating how fast the flip-flop moves away from the metastable state; it is related to the delay through the cross-coupled gates in the flip-flop

$$
\mathrm{P}\left(t_{\text {res }}>t\right)=\left(T_{0} / T_{c}\right) \mathrm{e}^{-t / \tau}
$$

- In short, if a flip-flop samples a metastable input, if you wait long enough (t), the output will have resolved to 1 or 0 with high probability.

Copyight © 2007 Elsevier

Synchronizer Internals

- A synchronizer can be built with two back-to-back flip-flops.
- Suppose the input D is transitioning when it is sampled by flip-flop 1, Fl.
- The amount of time the internal signal D2 can resolve to a 1 or 0 is
($\left.T_{c}-t_{\text {setup }}\right)$.

Synchronizers

- Asynchronous inputs (D) are inevitable (user interfaces, systems with different clocks interacting, etc.).
- The goal of a synchronizer is to make the probability of failure (the output Q still being metastable) low.
- A synchronizer cannot make the probability of failure 0 .

Synchronizer Probability of Failure

For each sample, the probability of failure of this synchronizer is:
$\mathrm{P}($ failure $)=\left(T_{0} / T_{c}\right) \mathrm{e}^{-\left(T_{c}-t_{\text {setup }}\right) / \tau}$

Example Synchronizer

Synchronizer Mean Time Before Failure

- If the asynchronous input changes once per second, the probability of failure per second of the synchronizer is simply P (failure):
- In general, if the input changes N times per second, the probability of failure per second of the synchronizer is:

$$
\left.P(\text { failure }) / \text { second }=\left(N T_{0} / T_{c}\right) \mathrm{e}^{-\left(T_{c}-t\right.}{ }_{\text {setup }}\right)^{1 / \tau}
$$

- Thus, the synchronizer fails, on average, $1 /[P($ failure $) /$ second $]$
- This is called the mean time between failures, MTBF:

$$
\text { MTBF }=1 /[P(\text { failure }) / \text { second }]=\left(T_{c} / N T_{0}\right) \mathrm{e}^{\left(T_{c}-t_{\text {setup }}\right) / \tau}
$$

- Suppose: $T_{c}=1 / 500 \mathrm{MHz} \quad \tau=200 \mathrm{ps}$ $T_{0}=150 \mathrm{ps} \quad t_{\text {setup }}=100 \mathrm{ps}$
$N=10$ events per second
- What is the probability of failure? MTBF?
$P($ failure $)=$
$P($ failure $) /$ second $=$
MTBF =
1V1DD

Copyight © 2007 Elsevier

Parallelism Example

- Ben Bitdiddle is baking cookies to celebrate the installation of his traffic light controller. It takes 5 minutes to roll the cookies and 15 minutes to bake them. After finishing one batch he immediately starts the next batch. What is the latency and throughput if Ben doesn't use parallelism?

Latency $=5+15=20$ minutes $=1 / 3$ hour
Throughput $=1$ tray/ $1 / 3$ hour $=3$ trays/hour

- duplicate hardware performs multiple tasks at once
- Temporal parallelism
- task is broken into multiple stages
- also called pipelining
- for example, an assembly line
nd
- Token: A group of inputs processed to produce a group of outputs
- Latency: Time for one token to pass from start to end
- Throughput: The number of tokens that can be produced per unit time
- Parallelism increases throughput.
- Two types of parallelism:
- Spatial parallelism

Parallelism Example

- What is the latency and throughput if Ben uses parallelism?
- Spatial parallelism: Ben asks Allysa P. Hacker to help, using her own oven
Temporal parallelism: Ben breaks the task into two stages: roll and baking. He uses two trays. While the first batch is baking he rolls the second batch, and so on.

