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Chapter 3 :: Topics
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• Finite State Machines
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Introduction

• Outputs of sequential logic depend on current and
prior input values.

• Sequential logic thus has memory.
• Some definitions:

– State: all the information about a circuit necessary to 
explain its future behavior

– Latches and flip-flops: state elements that store one bit 
of state

– Synchronous sequential circuits: combinational logic 
followed by a bank of flip-flops
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Sequential Circuits

• give sequence to events
• have memory (short-term)
• use feedback from output to input to store 

information



2

Copyright © 2007 Elsevier 3-<5>

State Elements

• The state of a circuit influences its future 
behavior

• State elements store state
– Bistable circuit
– SR Latch
– D Latch
– D Flip-flop
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Bistable Circuit

• Fundamental building block of other state elements
• Two outputs: Q, Q
• No inputs
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Bistable Circuit Analysis
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• Consider the two possible cases:
– Q = 0: then Q = 1 and Q = 0 (consistent)

– Q = 1: then Q = 0 and Q = 1 (consistent)

• Bistable circuit stores 1 bit of state in the state variable, Q (or 
Q )

• But there are no inputs to control the state
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SR Latch
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• SR Latch

• Consider the four possible cases:
– S = 1, R = 0
– S = 0, R = 1
– S = 0, R = 0
– S = 1, R = 1
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SR Latch Analysis

– S = 1, R = 0: then Q = 1 and Q = 0

– S = 0, R = 1: then Q = 0 and Q = 1

R

S

Q

Q

N1

N2

0

1

R

S

Q

Q

N1

N2

1

0

Copyright © 2007 Elsevier 3-<11>

SR Latch Analysis

– S = 0, R = 0: then Q = Qprev

– S = 1, R = 1: then Q = 0 and Q = 0
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SR Latch Symbol

• SR stands for Set/Reset Latch
– Stores one bit of state (Q)

• Control what value is being stored with S, R inputs
– Set: Make the output 1
– Reset: Make the output 0
– When the set input, S, is 1 (and R = 0), Q is set to 1
– When the reset input, R, is 1 (and S = 0), Q is reset to 0
– Invalid state when S = R = 1
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Q

SR Latch
Symbol
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D Latch

D Latch
Symbol

CLK

D Q

Q

• Two inputs: CLK, D
– CLK: controls when the output changes
– D (the data input): controls what the output changes to

• Function
– When CLK = 1, D passes through to Q (the latch is transparent)
– When CLK = 0, Q holds its previous value (the latch is opaque)

• Avoids invalid case when Q ≠ NOT Q
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D Latch Internal Circuit
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D Flip-Flop

• Two inputs: CLK, D
• Function

– The flip-flop “samples” D on the rising edge of CLK
• When CLK rises from 0 to 1, D passes through to Q
• Otherwise, Q holds its previous value

– Q changes only on the rising edge of CLK

• A flip-flop is called an edge-triggered device because it is 
activated on the clock edge D Flip-Flop

Symbols

D Q

Q
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D Flip-Flop Internal Circuit
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• Two back-to-back latches (L1 and L2) controlled by 
complementary clocks

• When CLK = 0
– L1 is transparent
– L2 is opaque
– D passes through to N1

• When CLK = 1
– L2 is transparent
– L1 is opaque
– N1 passes through to Q

• Thus, on the edge of the clock (when CLK rises from 0   1)
– D passes through to Q
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D Flip-Flop vs. D Latch

CLK

D Q

Q
D Q

Q

CLK

D

Q (latch)

Q (flop)
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Registers
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Enabled Flip-Flops

Internal
Circuit

D Q

CLKEN

D
Q

0

1
D Q

EN

Symbol

• Inputs: CLK, D, EN
– The enable input (EN) controls when new data (D) is stored

• Function
– EN = 1

• D passes through to Q on the clock edge 
– EN = 0

• the flip-flop retains its previous state
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Resettable Flip-Flops

• Inputs: CLK, D, Reset
• Function:

– Reset = 1
• Q is forced to 0 

– Reset = 0
• the flip-flop behaves like an ordinary D flip-flop

Symbols

D Q
Reset

r
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Resettable Flip-Flops

• Two types:
– Synchronous: resets at the clock edge only
– Asynchronous: resets immediately when Reset = 1

• Synchronously resettable flip-flop requires changing the 
internal circuitry of the flip-flop (see Exercise 3.10)

• Asynchronously resettable flip-flop:

Internal
Circuit

D Q

CLK

D QReset
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Settable Flip-Flops

• Inputs: CLK, D, Set
• Funtion:

– Set = 1
• Q is set to 1 

– Set = 0
• the flip-flop behaves like an ordinary D flip-flop

Symbols

D Q
Set

s
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Sequential Logic

• Sequential circuits: all circuits that aren’t combinational
• A problematic circuit:

• This circuit has no inputs and 1-3 outputs

X

Y

Z

time (ns)0 1 2 3 4 5 6 7 8

X Y Z
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Synchronous Sequential Logic Design

• Breaks cyclic paths by inserting registers
• These registers contain the state of the system
• The state changes at the clock edge, so we say the system is 

synchronized to the clock
• Rules of synchronous sequential circuit composition:

– Every circuit element is either a register or a combinational circuit
– At least one circuit element is a register
– All registers receive the same clock signal
– Every cyclic path contains at least one register

• Two common synchronous sequential circuits
– Finite state machines (FSMs)
– Pipelines
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Finite State Machine (FSM)

• Consists of:
– State register that

• Store the current state and 
• Load the next state at the clock edge

– Combinational logic that
• Computes the next state
• Computes the outputs

Next
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Current
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Next
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Output
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Outputs
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Finite State Machines (FSMs)

• Next state is determined by the current state and the inputs
• Two types of finite state machines differ in the output logic:

– Moore FSM: outputs depend only on the current state
– Mealy FSM: outputs depend on the current state and the inputs

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
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state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM
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Finite State Machine Example

• Traffic light controller
– Traffic sensors: TA, TB (TRUE when there’s traffic)
– Lights: LA, LB

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
B

lvd.
Dorms

Fields

Dining
Hall

Labs
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FSM Black Box

• Inputs: CLK, Reset, TA, TB

• Outputs: LA, LB

TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller
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FSM State Transition Diagram

• Moore FSM: outputs labeled in each state
• States: Circles
• Transitions: Arcs

S0
LA: green
LB: red

S1
LA: yellow

LB: red

S3
LA: red

LB: yellow

S2
LA: red

LB: green

TA

TA

TB

TB

Reset
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FSM State Transition Table

XXS3
1XS2
0XS2
XXS1
X1S0
X0S0

S'TBTAS

Next 
StateInputs

Current 
State
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FSM Encoded State Transition Table

S'1

1
1
1
0
0
0
S1

XX1
1X0
0X0
XX1
X10
X00

S'0TBTAS0

Next StateInputsCurrent State

11S3

10S2

01S1

00S0

EncodingState
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FSM Output Table

LB1

1
1
0
0
S1

1
0
1
0

LB0LA0LA1S0

OutputsCurrent State

10red

01yellow

00green

EncodingOutput
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FSM Schematic: State Register
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FSM Schematic: Next State Logic
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FSM Schematic: Output Logic
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Copyright © 2007 Elsevier 3-<44>

FSM Timing Diagram

C LK

R eset

T A

T B

S '1:0

S 1:0

L A 1:0

L B 1:0

C yc le  1 C yc le  2 C yc le  3 C yc le  4 C yc le  5 C yc le  6 C yc le  7 C yc le  8 C yc le  9 C yc le  10

S 1 (01 ) S 2  (10 ) S 3  (11) S 0  (00 )

t (sec )

??

??

S 0  (00 )

S 0  (00 ) S 1  (01 ) S 2  (10) S 3  (11 ) S 1  (01 )

??

??

0 5 10 15 20 25 30 35 40 45

G reen  (00 )

R ed  (10 )

S 0  (00 )

Y e llow (01 ) R ed  (10 ) G reen (00 )

G reen  (00 ) R ed  (10 )Y e llow  (01 )

S0
LA: green
LB: red

S1
LA: yellow

LB: red

S3
LA: red

LB: yellow

S2
LA: red

LB: green

TA

TA

TB

TB

Reset

Copyright © 2007 Elsevier 3-<45>

FSM State Encoding

• Binary encoding: i.e., for four states, 00, 01, 10, 11
• One-hot encoding

– One state bit per state
– Only one state bit is HIGH at once
– I.e., for four states, 0001, 0010, 0100, 1000
– Requires more flip-flops
– Often next state and output logic is simpler
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Moore vs. Mealy FSM

• Alyssa P. Hacker has a snail that crawls down a paper tape 
with 1’s and 0’s on it. The snail smiles whenever the last four 
digits it has crawled over are 1101.  Design Moore and Mealy 
FSMs of the snail’s brain.
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State Transition Diagrams

reset

Moore FSM
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S1
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S2
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01 0
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Mealy FSM: arcs indicate input/output
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Moore FSM State Transition Table
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1110
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0
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Moore FSM Output Table

001
0
0
0
0
S2

1
1
0
0
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1
0
1
0

YS0
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Mealy FSM State Transition and Output Table

OutputNext StateInputCurrent State
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S'1 S'0

1
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Moore FSM Schematic
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Mealy FSM Schematic
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Moore and Mealy Timing Diagram

Mealy Machine

Moore Machine

CLK

Reset

A

S

Y

S

Y
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1 1 0 1 1 0 1 01
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Factoring State Machines

• Break complex FSMs into smaller interacting 
FSMs

• Example: Modify the traffic light controller to 
have a Parade Mode.
– The FSM receives two more inputs: P, R
– When P = 1, it enters Parade Mode and the Bravado 

Blvd. light stays green.
– When R = 1, it leaves Parade Mode

Copyright © 2007 Elsevier 3-<58>

Parade FSM

Unfactored FSM

Factored FSM
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Unfactored FSM State Transition Diagram

S0
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R

R
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Factored FSM State Transition Diagram
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LB: yellow

S2
LA: red
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FSM Design Procedure

• Identify the inputs and outputs
• Sketch a state transition diagram
• Write a state transition table
• Select state encodings
• For a Moore machine:

– Rewrite the state transition table with the selected state encodings
– Write the output table

• For a Mealy machine:
– Rewrite the combined state transition and output table with the selected 

state encodings
• Write Boolean equations for the next state and output logic
• Sketch the circuit schematic
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Timing

• Flip-flop samples D at clock edge
• D must be stable when it is sampled
• Similar to a photograph, D must be stable around the clock 

edge
• If D is changing when it is sampled, metastability can occur
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Input Timing Constraints

• Setup time: tsetup = time before the clock edge that data must 
be stable (i.e. not changing)

• Hold time: thold = time after the clock edge that data must be 
stable

• Aperture time: ta = time around clock edge that data must be 
stable (ta = tsetup +  thold)

CLK

tsetup

D

thold

ta Copyright © 2007 Elsevier 3-<64>

Output Timing Constraints

• Propagation delay: tpcq = time after clock edge that the output 
Q is guaranteed to be stable (i.e., to stop changing)

• Contamination delay: tccq = time after clock edge that Q
might be unstable (i.e., start changing)

CLK

tccq
tpcq

Q
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Dynamic Discipline

• The input to a synchronous sequential circuit must be stable 
during the aperture (setup and hold) time around the clock 
edge.

• Specifically, the input must be stable
– at least tsetup before the clock edge
– at least until thold after the clock edge
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Dynamic Discipline

• The delay between registers has a minimum and 
maximum delay, dependent on the delays of the circuit 
elements

CL

CLKCLK

R1 R2

Q1 D2

(a)

CLK

Q1

D2
(b)

Tc
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Setup Time Constraint

• The setup time constraint depends on the maximum delay from 
register R1 through the combinational logic.

• The input to register R2 must be stable at least tsetup before the clock 
edge.

CLK

Q1

D2

Tc

tpcq tpd tsetup

CL

CLKCLK

Q1 D2

R1 R2 Tc ≥
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Hold Time Constraint

• The hold time constraint depends on the minimum delay from 
register R1 through the combinational logic.

• The input to register R2 must be stable for at least thold after the clock 
edge.

thold <
CLK

Q1

D2

tccq tcd

thold

CL

CLKCLK

Q1 D2

R1 R2
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Timing Analysis

CLK CLK

A

B

C

D

X'

Y'

X

Y

Timing Characteristics
tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 pspe
r g

at
e

tpd =

tcd =

Setup time constraint:

Tc ≥

fc = 1/Tc =

Hold time constraint:

tccq + tpd > thold ?
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Fixing Hold Time Violation

Timing Characteristics
tccq = 30 ps

tpcq = 50 ps

tsetup = 60 ps

thold = 70 ps

tpd = 35 ps

tcd = 25 pspe
r g

at
e

tpd = 

tcd =

Setup time constraint:

Tc ≥

fc =

Hold time constraint:

tccq + tpd > thold ?

CLK CLK

A

B

C

D

X'

Y'

X

Y

Add buffers to the short paths:
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Clock Skew

• The clock doesn’t arrive at all registers at the same time
• This may be caused by delay or other timing noise
• Skew is the difference between two clock edges
• Because there may be many registers in a system, we examine the 

worst case for each case to guarantee that the dynamic discipline is 
not violated for any register

t skew

CLK1

CLK2

CL

CLK2CLK1

R1 R2

Q1 D2

CLKdelay

CLK
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Setup Time Constraint with Clock Skew

• In the worst case, the CLK2 is earlier than CLK1

Tc ≥
CLK1

Q1

D2

Tc

tpcq tpd tsetuptskew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2
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Hold Time Constraint with Clock Skew

• In the worst case, CLK2 is later than CLK1

tccq + tcd >
tcd >

tccq tcd

thold

Q1

D2

tskew

CL

CLK2CLK1

R1 R2

Q1 D2

CLK2

CLK1
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Violating the Dynamic Discipline

• Asynchronous (for example, user) inputs might violate the dynamic 
discipline

CLK

tsetup thold
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D

Q
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Q

D

Q ???

C
as

e 
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II
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CLK
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Metastability

• Any bistable device has two stable states and a metastable state 
between them

• A flip-flop has two stable states (1 and 0) and one metastable state
• If a flip-flop lands in the metastable state, it could stay there for an 

undetermined amount of time

metastable

stablestable
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Flip-flop Internals

R

S

Q

Q

N1

N2

• Because the flip-flop has feedback, if Q is somewhere between 1 and 
0, the cross-coupled gates will eventually drive the output to either 
rail (1 or 0, depending on which one it is closer to).

• A signal is considered metastable if it hasn’t resolved to 1 or 0
• If a flip-flop input changes at a random time, the probability that the 

output Q is metastable after waiting some time, t, is:
P(tres > t) = (T0/Tc ) e-t/τ

tres :  time to resolve to 1 or 0
T0, τ :  properties of the circuit
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Metastability

• Intuitively:
– T0/Tc describes the probability that the input changes at a bad 

time, i.e., during the aperture time
P(tres > t) = (T0/Tc ) e-t/τ

– τ is a time constant indicating how fast the flip-flop moves away 
from the metastable state; it is related to the delay through the 
cross-coupled gates in the flip-flop

P(tres > t) = (T0/Tc ) e-t/τ

• In short, if a flip-flop samples a metastable input, if you 
wait long enough (t), the output will have resolved to 1 
or 0 with high probability.
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Synchronizers

D Q

CLK

S
Y

N
C

• Asynchronous inputs (D) are inevitable (user interfaces, 
systems with different clocks interacting, etc.).

• The goal of a synchronizer is to make the probability of 
failure (the output Q still being metastable) low.

• A synchronizer cannot make the probability of failure 0.
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Synchronizer Internals

D

Q

D2 Q

D2

Tc

tsetup tpcq

CLK CLK

CLK

tres

metastable

F1 F2

• A synchronizer can be built with two back-to-back flip-flops.
• Suppose the input D is transitioning when it is sampled by flip-flop 

1, F1.
• The amount of time the internal signal D2 can resolve to a 1 or 0 is 

(Tc - tsetup).
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Synchronizer Probability of Failure

D

Q

D2 Q

D2

Tc

tsetup tpcq

CLK CLK

CLK

tres

metastable

F1 F2

For each sample, the probability of failure of this synchronizer is:
P(failure) = (T0/Tc ) e-(T

c
- t

setup
)/τ
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Synchronizer Mean Time Before Failure

• If the asynchronous input changes once per second, the probability of failure 
per second of the synchronizer is simply P(failure):

• In general, if the input changes N times per second, the probability of failure 
per second of the synchronizer is:

P(failure)/second = (NT0/Tc) e-(T
c

- t
setup

)/τ

• Thus, the synchronizer fails, on average, 1/[P(failure)/second]
• This is called the mean time between failures, MTBF:

MTBF = 1/[P(failure)/second] = (Tc/NT0) e(T
c

- t
setup

)/τ
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Example Synchronizer

D D2 Q

CLK CLK

F1 F2

• Suppose:  Tc = 1/500 MHz τ = 200 ps
T0 = 150 ps tsetup = 100 ps
N = 10 events per second

• What is the probability of failure? MTBF?
P(failure) = 

P(failure)/second = 

MTBF    =
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Parallelism

• Some definitions:
– Token: A group of inputs processed to produce a group of outputs
– Latency: Time for one token to pass from start to end
– Throughput: The number of tokens that can be produced per unit time

• Parallelism increases throughput.
• Two types of parallelism:

– Spatial parallelism
• duplicate hardware performs multiple tasks at once

– Temporal parallelism
• task is broken into multiple stages
• also called pipelining
• for example, an assembly line
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Parallelism Example

• Ben Bitdiddle is baking cookies to celebrate the installation of 
his traffic light controller.  It takes 5 minutes to roll the cookies 
and 15 minutes to bake them.  After finishing one batch he 
immediately starts the next batch.  What is the latency and 
throughput if Ben doesn’t use parallelism?

Latency = 5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour
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Parallelism Example

• What is the latency and throughput if Ben uses parallelism?
– Spatial parallelism: Ben asks Allysa P. Hacker to help, using her own 

oven
– Temporal parallelism: Ben breaks the task into two stages: roll and 

baking.  He uses two trays.  While the first batch is baking he rolls the 
second batch, and so on.
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Spatial Parallelism
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Temporal Parallelism

Latency =
Throughput = 
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