
1

Copyright © 2007 Elsevier 2-<1>

Chapter 2 :: Combinational Logic Design

Digital Design and Computer Architecture
David Money Harris and Sarah L. Harris

Copyright © 2007 Elsevier 2-<2>

Chapter 2 :: Topics

• Introduction
• Boolean Equations
• Boolean Algebra
• From Logic to Gates
• Multilevel Combinational Logic
• X’s and Z’s, Oh My
• Karnaugh Maps
• Combinational Building Blocks
• Timing

Copyright © 2007 Elsevier 2-<3>

Introduction

A logic circuit is composed of:
• Inputs
• Outputs
• Functional specification
• Timing specification

inputs outputs
functional spec

timing spec

Copyright © 2007 Elsevier 2-<4>

Circuits

• Nodes
– Inputs: A, B, C
– Outputs: Y, Z
– Internal: n1

• Circuit elements
– E1, E2, E3
– Each a circuit

A E1

E2

E3B

C

n1

Y

Z

2

Copyright © 2007 Elsevier 2-<5>

Types of Logic Circuits

• Combinational Logic
– Memoryless
– Outputs determined by current values of inputs

• Sequential Logic
– Has memory
– Outputs determined by previous and current values of inputs

inputs outputs
functional spec

timing spec

Copyright © 2007 Elsevier 2-<6>

Rules of Combinational Composition

• Every circuit element is itself combinational
• Every node of the circuit is either designated as an input to

the circuit or connects to exactly one output terminal of a
circuit element

• The circuit contains no cyclic paths: every path through
the circuit visits each circuit node at most once

• Example:

Copyright © 2007 Elsevier 2-<7>

Boolean Equations

• Functional specification of outputs in terms of inputs
• Example:

S = F(A, B, Cin)
Cout = F(A, B, Cin)

A S

S = A ⊕ B ⊕ Cin
Cout = AB + ACin + BCin

B
Cin

CL Cout

Copyright © 2007 Elsevier 2-<8>

A B Y
0 0
0 1
1 0
1 1

0
1
0
1

minterm

A B
A B
A B

A B

Y = F(A, B) =

• All Boolean equations can be written in SOP form
• Each row in a truth table has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)
• The function is formed by ORing the minterms for which

the output is TRUE
• Thus, a sum (OR) of products (AND terms)

Sum-of-Products (SOP) Form

3

Copyright © 2007 Elsevier 2-<11>Y = F(A, B) = (A + B)(A + B)

• All Boolean equations can be written in POS form
• Each row in a truth table has a maxterm
• A maxterm is a sum (OR) of literals
• Each maxterm is FALSE for that row (and only that row)
• The function is formed by ANDing the maxterms for

which the output is FALSE
• Thus, a product (AND) of sums (OR terms)

Product-of-Sums (POS) Form

A + B
A B Y
0 0
0 1
1 0
1 1

0
1
0
1

maxterm

A + B
A + B
A + B

Copyright © 2007 Elsevier 2-<12>

Boolean Equations Example

• You are going to the cafeteria for lunch
– You won’t eat lunch (E)
– If it’s not open (O) or
– If they only serve corndogs (C)

• Write a truth table for determining if you will eat
lunch (E).

O C E
0 0
0 1
1 0
1 1

Copyright © 2007 Elsevier 2-<14>

SOP & POS Form

• SOP – sum-of-products

• POS – product-of-sums

O + C
O C E
0 0
0 1
1 0
1 1

0
0
1
0

maxterm

O + C
O + C
O + C

O C E
0 0
0 1
1 0
1 1

0
0
1
0

minterm

O C
O C
O C

O C

Y = (O + C)(O + C)(O + C)

Y = OC

Copyright © 2007 Elsevier 2-<15>

Boolean Algebra

• Set of axioms and theorems to simplify Boolean equations
• Like regular algebra, but in some cases simpler because

variables can have only two values (1 or 0)
• Axioms and theorems obey the principles of duality:

– ANDs and ORs interchanged, 0’s and 1’s interchanged

4

Copyright © 2007 Elsevier 2-<16>

Boolean Axioms

Copyright © 2007 Elsevier 2-<17>

T1: Identity Theorem

• B 1 =
• B + 0 =

Copyright © 2007 Elsevier 2-<19>

T2: Null Element Theorem

• B 0 =
• B + 1 =

Copyright © 2007 Elsevier 2-<21>

T3: Idempotency Theorem

• B B =
• B + B =

5

Copyright © 2007 Elsevier 2-<23>

T4: Identity Theorem

• B =

Copyright © 2007 Elsevier 2-<25>

T5: Complement Theorem

• B B =
• B + B =

Copyright © 2007 Elsevier 2-<27>

Boolean Theorems: Summary

Copyright © 2007 Elsevier 2-<28>

Boolean Theorems of Several Variables

6

Copyright © 2007 Elsevier 2-<29>

Simplifying Boolean Expressions: Example 1

• Y = AB + AB

Copyright © 2007 Elsevier 2-<31>

Simplifying Boolean Expressions: Example 2

• Y = A(AB + ABC)

Copyright © 2007 Elsevier 2-<33>

DeMorgan’s Theorem

• Y = AB = A + B

• Y = A + B = A B

A
B Y

A
B Y

A
B Y

A
B Y

Copyright © 2007 Elsevier 2-<34>

Bubble Pushing

• Pushing bubbles backward (from the output) or forward
(from the inputs) changes the body of the gate from
AND to OR or vice versa.

• Pushing a bubble from the output back to the inputs puts
bubbles on all gate inputs.

• Pushing bubbles on all gate inputs forward toward the
output puts a bubble on the output and changes the gate
body.

A
B Y A

B Y

A
B YA

B Y

7

Copyright © 2007 Elsevier 2-<35>

• What is the Boolean expression for this circuit?

Bubble Pushing

A
B

Y
C
D

Copyright © 2007 Elsevier 2-<37>

• Begin at the output of the circuit and work toward the inputs.
• Push any bubbles on the final output back toward the inputs.
• Draw each gate in a form so that bubbles cancel.

Bubble Pushing Rules

A
B

C

D
Y

Copyright © 2007 Elsevier 2-<38>

Bubble Pushing Example

A
B

C Y
D

Copyright © 2007 Elsevier 2-<42>

From Logic to Gates

• Two-level logic: ANDs followed by ORs
• Example: Y = ABC + ABC + ABC

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

8

Copyright © 2007 Elsevier 2-<43>

Circuit Schematics with Style

• Inputs are on the left (or top) side of a schematic
• Outputs are on the right (or bottom) side of a schematic
• Whenever possible, gates should flow from left to right
• Straight wires are better to use than wires with multiple

corners

Copyright © 2007 Elsevier 2-<44>

Circuit Schematic Rules (cont.)

• Wires always connect at a T junction
• A dot where wires cross indicates a connection

between the wires
• Wires crossing without a dot make no connection

wires connect
at a T junction

wires connect
at a dot

wires crossing
without a dot do

not connect

Copyright © 2007 Elsevier 2-<45>

Multiple Output Circuits

A1 A0
0 0
0 1
1 0
1 1

Y3 Y2 Y1 Y0A3 A2
0 0
0 0
0 0
0 0

0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

A0

A1

PRIORITY
CiIRCUIT

A2

A3

Y0

Y1

Y2

Y3

• Output asserted
corresponding to
most significant
TRUE input

Copyright © 2007 Elsevier 2-<47>

Priority Encoder Hardware

A1 A0
0 0
0 1
1 0
1 1

0
0
0
0

Y3 Y2 Y1 Y0
0
0
0
0

0
0
1
1

0
1
0
0

A3 A2
0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A3A2A1A0
Y3

Y2

Y1

Y0

9

Copyright © 2007 Elsevier 2-<48>

Don’t Cares

A1 A0
0 0
0 1
1 0
1 1

0
0
0
0

Y3 Y2 Y1 Y0
0
0
0
0

0
0
1
1

0
1
0
0

A3 A2
0 0
0 0
0 0
0 0

0 0 0 1 0 00 1
0 1
1 0
1 1
0 0

0 1
0 1
0 1
1 0

0 11 0
1 0
1 1
0 0
0 1

1 0
1 0
1 1
1 1

1 01 1
1 11 1

0
0
0
1

1
1
1
0

0
0
0
0

0
0
0
0

1 0 0 0
1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1 0 0 0
1 0 0 0

A1 A0
0 0
0 1
1 X
X X

0
0
0
0

Y3 Y2 Y1 Y0
0
0
0
1

0
0
1
0

0
1
0
0

A3 A2
0 0
0 0
0 0
0 1

X X 1 0 0 01 X

Copyright © 2007 Elsevier 2-<49>

Contention: X

• Contention: circuit tries to drive the output to 1 and 0
– Actual value may be somewhere in between
– Could be a legal 0, a legal 1, or in the forbidden zone
– Might change with voltage, temperature, time, noise
– Often causes excessive power dissipation

• Contention usually indicates a bug.
– Fix it unless you are sure you know what you are doing.

• Warning: X is used for “don’t care” and contention
– Note the same thing
– Look at the context to tell them apart

A = 1

Y = X

B = 0

Copyright © 2007 Elsevier 2-<50>

Floating: Z

• Floating, high impedance, open, high Z
• Floating output might be 0, 1, or somewhere in between

– A voltmeter won’t indicate whether a node is floating

Tristate Buffer

E A Y
0 0 Z
0 1 Z
1 0 0
1 1 1

A

E

Y

Copyright © 2007 Elsevier 2-<51>

Tristate Busses

• Floating nodes are used in tristate busses
– Many different drivers
– Exactly one is active at any time

en1

to bus
from bus

en2

to bus
from bus

en3

to bus
from bus

en4

to bus
from bus

shared bus

processor

video

Ethernet

memory

10

Copyright © 2007 Elsevier 2-<52>

Karnaugh Maps (K-Maps)

• Boolean expressions can be minimized by combining terms
• K-maps minimize equations graphically
• PA + PA = P

C 00 01

0

1

Y

11 10
AB

1

1

0

0

0

0

0

0

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

Copyright © 2007 Elsevier 2-<53>

• Circle 1’s in adjacent squares
• In the Boolean expression, include only the literals

whose true and complement form are not in the circle

Y = AB

K-map

C 00 01

0

1

Y

11 10
AB

1

0

0

0

0

0

0

1

B C
0 0
0 1
1 0
1 1

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
0
0
0
0
0
0

Y

Copyright © 2007 Elsevier 2-<54>

3-input K-map

C 00 01

0

1

Y

11 10
AB

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

1

B C Y
0 0 0
0 1 0
1 0
1 1 1

Truth Table

C 00 01

0

1

Y

11 10
ABA

0
0
0
0

0 0 0
0 1 0
1 0 0
1 1 1

1
1
1
1

K-Map

Copyright © 2007 Elsevier 2-<56>

K-map Definitions

• Complement: variable with a bar over it
A, B, C

• Literal: variable or its complement
A, A, B, B, C, C

• Implicant: product of literals
ABC, AC, BC

• Prime implicant: implicant corresponding to the
largest circle in a K-map

11

Copyright © 2007 Elsevier 2-<57>

K-map Rules

• Every 1 in a K-map must be circled at least once
• Each circle must span a power of 2 (i.e. 1, 2, 4)

squares in each direction
• Each circle must be as large as possible
• A circle may wrap around the edges of the K-map
• A “don't care” (X) is circled only if it helps

minimize the equation

Copyright © 2007 Elsevier 2-<58>

4-input K-map

01 11

1

0

0

1

0

0

1

101

1

1

1

1

0

0

0

1

11

10

00

00

10
AB

CD

Y

Y = AC + ABD + ABC + BD

Copyright © 2007 Elsevier 2-<59>

4-input K-map

01 11

01

11

10

00

00

10
AB

CD

Y

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
1
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

1
0
0
0
0
0

Copyright © 2007 Elsevier 2-<62>

K-maps with Don’t Cares

0

C D
0 0
0 1
1 0
1 1

B
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1

1
1
0
X
1
1

YA
0
0
0
0
0
0
0
0

0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

1
1
1
1
1
1
1
1

1
1

X
X
X
X
X
X

01 11

01

11

10

00

00

10
AB

CD

Y

12

Copyright © 2007 Elsevier 2-<65>

Combinational Building Blocks

• Multiplexers
• Decoders

Copyright © 2007 Elsevier 2-<66>

Multiplexer (Mux)

• Selects between one of N inputs to connect to the output.
• log2N-bit select input – control input
• Example: 2:1 Mux

Y
0 0
0 1
1 0
1 1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0

1

S

D0
Y

D1

D1 D0S

Copyright © 2007 Elsevier 2-<68>

Multiplexer Implementations

• Logic gates
– Sum-of-products form

Y

D0

S

D1
D1

Y

D0

S

S 00 01

0

1

Y

11 10
D0 D1

0

0

0

1

1

1

1

0

Y = D0S + D1S

• Tristates
– For an N-input mux, use N

tristates
– Turn on exactly one to

select the appropriate input

Copyright © 2007 Elsevier 2-<69>

Logic using Multiplexers

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

00

Y01
10
11

A B

• Using the mux as a lookup table

13

Copyright © 2007 Elsevier 2-<70>

Logic using Multiplexers

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB

A Y

0

1

0 0

1

A

B
Y

B

• Reducing the size of the mux

Copyright © 2007 Elsevier 2-<71>

• N inputs, 2N outputs
• One-hot outputs: only one output HIGH at once

Decoders

2:4
Decoder

A1
A0

Y3
Y2
Y1
Y000

01
10
11

0 0
0 1
1 0
1 1

0
0
0
1

Y3 Y2 Y1 Y0A0A1
0
0
1
0

0
1
0
0

1
0
0
0

Copyright © 2007 Elsevier 2-<72>

Decoder Implementation

Y3

Y2

Y1

Y0

A0A1

Copyright © 2007 Elsevier 2-<73>

• OR minterms

Logic using Decoders

2:4
Decoder

A
B

00
01
10
11

Y = AB + AB

Y

AB
AB
AB
AB

Minterm

= A ⊕ B

14

Copyright © 2007 Elsevier 2-<74>

• Delay between input change and output changing
• How to build fast circuits?

Timing

A

Y

Time

delay

A Y

Copyright © 2007 Elsevier 2-<75>

Propagation & Contamination Delay

• Propagation delay: tpd = max delay from input to output
• Contamination delay: tcd = min delay from input to output

A

Y

Time

A Y

tpd

tcd

Copyright © 2007 Elsevier 2-<76>

Propagation & Contamination Delay

• Delay is caused by
– Capacitance and resistance in a circuit
– Speed of light limitation

• Reasons why tpd and tcd may be different:
– Different rising and falling delays
– Multiple inputs and outputs, some of which are faster than others
– Circuits slow down when hot and speed up when cold

Copyright © 2007 Elsevier 2-<77>

A
B

C

D Y

Critical Path

Short Path

n1

n2

Critical (Long) Path: tpd = 2tpd_AND + tpd_OR

Short Path: tcd = tcd_AND

Critical and Short Paths

15

Copyright © 2007 Elsevier 2-<78>

• A glitch occurs when a single input change causes
multiple output changes

Glitches

Copyright © 2007 Elsevier 2-<79>

Glitch Example

A
B

C

Y

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC

• What happens when A = 0, C = 1, B falls?

Copyright © 2007 Elsevier 2-<81>

Glitch Example (cont.)

A = 0
B = 1 0

C = 1

Y = 1 0 1

Short Path

Critical Path

B

Y

Time

1 0

0 1

glitch

n1

n2

n2

n1

Copyright © 2007 Elsevier 2-<82>

00 01

1

Y

11 10
AB

1

1

0

1

0

1

0

0

C

0

Y = AB + BC + ACAC

Fixing the Glitch

B = 1 0
Y = 1

A = 0

C = 1

16

Copyright © 2007 Elsevier 2-<83>

Why Understand Glitches?

• Glitches don’t cause problems because of
synchronous design conventions (which we’ll talk
about in Chapter 3)

• But it’s important to recognize a glitch when you
see one in simulations or on an oscilloscope

• Can’t get rid of all glitches – simultaneous
transitions on multiple inputs can also cause
glitches

