

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Copyight 02007 Elsevier

Circuits

- Nodes
- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- Circuit elements
- E1, E2, E3
- Each a circuit

Rules of Combinational Composition

- Every circuit element is itself combinational
- Every node of the circuit is either designated as an input to the circuit or connects to exactly one output terminal of a circuit element
- The circuit contains no cyclic paths: every path through the circuit visits each circuit node at most once
- Example:

Copyight 02007 Elsevier

Sum-of-Products (SOP) Form

- All Boolean equations can be written in SOP form
- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- The function is formed by ORing the minterms for which the output is TRUE
- Thus, a sum (OR) of products (AND terms)

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row in a truth table has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- The function is formed by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

A	B	Y	maxterm
0	0	0	$\mathrm{~A}+\mathrm{B}$
0	1	1	$\mathrm{~A}+\overline{\mathrm{B}}$
1	0	0	$\overline{\mathrm{~A}}+\mathrm{B}$
1	1	1	$\overline{\mathrm{~A}}+\overline{\mathrm{B}}$

Copyight © 2007 Elsevier

$$
Y=F(A, B)=(A+B)(\bar{A}+B)
$$

Boolean Equations Example

- You are going to the cafeteria for lunch
- You won't eat lunch (E)
- If it's not open ($\overline{\mathrm{O}}$) or
- If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

O	C	E
0	0	
0	1	
1	0	
1	1	

Copyright © 2007 Elsevier

Boolean Algebra

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (1 or 0)
- Axioms and theorems obey the principles of duality: - ANDs and ORs interchanged, 0's and 1's interchanged

Boolean Axioms					
	Axiom		Dual	Name	
A1	$B=0$ if $B \neq 1$	A1 ${ }^{\prime}$	$B=1$ if $B \neq 0$	Binary field	
A2	$\overline{0}=1$	A 2^{\prime}	$\mathrm{T}=0$	NOT	
A3	$0 \cdot 0=0$	A 3^{\prime}	$1+1=1$	AND/OR	
A4	$1 \cdot 1=1$	A4'	$0+0=0$	AND/OR	
A5	$0 \cdot 1=1 \cdot 0=0$	A5'	$1+0=0+1=1$	AND/OR	
	Theorem		Dual	Name	
T1	$B \cdot 1=B$	T1'	$B+0=B$	Identity	
T2	$B \cdot 0=0$	T2'	$B+1=1$	Null Element	
T3	$B \cdot B=B$	T3'	$B+B=B$	Idempotency	
T4		$\overline{\bar{B}}=B$		Involution	
T5	$B \cdot \bar{B}=0$	T5'	$B+\bar{B}=1$	Complements	
Copyright 02007 Elsevier					$\frac{\text { Bing }}{\text { ELSEVIER }}$

T3: Idempotency Theorem

- $\mathrm{B} \cdot \mathrm{B}=$
- $\mathrm{B}+\mathrm{B}=$

T5: Complement Theorem

- • $\overline{\mathrm{B}}=$
- $\mathrm{B}+\overline{\mathrm{B}}=$

Boolean Theorems of Several Variables				
	Theorem		Dual	Name
	$B \cdot C=C \cdot B$	T6'	$B+C=C+B$	Commutativity
	$(B \cdot C) \cdot D=B \bullet(C \cdot D)$	T7 ${ }^{\prime}$	$(B+C)+D=B+(C+D)$	Associativity
	$(B \cdot C)+B \cdot D=B \cdot(C+D)$	T8'	$(B+C) \cdot(B+D)=B+(C \cdot D)$	Distributivity
	$B \cdot(B+C)=B$	T9 ${ }^{\prime}$	$B+(B \cdot C)=B$	Covering
T10	$(B \cdot C)+(B \bullet C)=B$	T10 ${ }^{\prime}$	$(B+C) \cdot(B+C)=B$	Combining
	$\begin{aligned} & (B \bullet C)+(B \cdot D)+(C \cdot D) \\ & =B \cdot C+B \cdot D \end{aligned}$		$\begin{aligned} & (B+C) \cdot(B+D) \cdot(C+D) \\ & =(B+C) \cdot(B+D) \end{aligned}$	Consensus
T12	$\begin{aligned} & B_{0} \cdot B_{1} \cdot B_{2} \cdots \\ & =\left(B_{0}+B_{1}+B_{2} \ldots\right) \end{aligned}$		$\begin{gathered} B_{0}+B_{1}+B_{2} \ldots \\ =\left(\overline{B_{0}} \bullet \overline{B_{1}} \cdot B_{B_{2}}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { De Morgan's } \\ & \text { Theorem } \end{aligned}$
Copyright	2007 Elsevier			

Simplifying Boolean Expressions: Example 1	
- $Y=\bar{A}$	

Simplifying Boolean Expressions: Example 2

- $Y=A(A B+A B C)$

DeMorgan's Theorem	
- $Y=\overline{A B}=\bar{A}+\bar{B}$	
- $Y=\overline{A+B}=\bar{A} \cdot \bar{B}$	
	2.838

Bubble Pushing

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
- Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

- Pushing bubbles on all gate inputs forward toward the output puts a bubble on the output and changes the gate body.

Bubble Pushing Rules

- Begin at the output of the circuit and work toward the inputs.
- Push any bubbles on the final output back toward the inputs
- Draw each gate in a form so that bubbles cancel.

Copyight © 2007 Essevier
2-3877

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y=\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+A \bar{B} C$

Floating: Z

K-map Definitions

- Complement: variable with a bar over it
$\bar{A}, \bar{B}, \bar{C}$
- Literal: variable or its complement
A, \bar{A}, B, B, C, C
- Implicant: product of literals $A B \bar{C}, \bar{A} C, B C$
- Prime implicant: implicant corresponding to the largest circle in a K-map

K-map Rules

- Every 1 in a K-map must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges of the K-map
- A "don't care" (X) is circled only if it helps minimize the equation

Multiplexer (Mux)		
- Selects between one of N inputs to connect to the output. - $\log _{2} \mathrm{~N}$-bit select input - control input - Example: 2:1 Mux Copyright © 2007 Elsevier		

Multiplexer Implementations	
- Logic gates - Sum-of-products form Copyright © 2007 Elsevier	- Tristates - For an N-input mux, use N tristates - Turn on exactly one to select the appropriate input

Decoders

- N inputs, 2^{N} outputs
- One-hot outputs: only one output HIGH at once

Copyight © 2007 Essevier

Critical and Short Paths

Critical (Long) Path: $t_{p d}=2 t_{p d_{_} \mathrm{AND}}+t_{p d_{-} \mathrm{OR}}$ Short Path: $t_{c d}=t_{c d _ \text {AND }}$

| Glitches |
| :--- | :--- |
| |
| |
| |
| |
| |
| |
| |
| |
| multiple output changes |

Why Understand Glitches?

- Glitches don't cause problems because of synchronous design conventions (which we'll talk about in Chapter 3)
- But it's important to recognize a glitch when you see one in simulations or on an oscilloscope
- Can't get rid of all glitches - simultaneous transitions on multiple inputs can also cause glitches

