

Boolean Equations	
 Functional specification of outputs in terms of inputs Example: S = F(A, B, C_{in}) C_{out} = F(A, B, C_{in}) 	I
$A = \bigcirc \\ B = \bigcirc \\ C_{in} \bigcirc \\ C_{out} = A \oplus B \oplus C_{in} \\ C_{out} = AB + AC_{in} + BC_{in}$	
Copyright © 2007 Elsevier 2-<7>	ELSEVIER

Sum-of-Pro	duc	ts (SOF	P) Form		
 Each row A mintern Each mint The funct the output 	in a tr n is a term i ion is	ruth ta produ s TRU forme RUE	able h ict (A JE fo ed by	as a mintern ND) of liter r that row (a	als nd only that row) ninterms for whic	h
	Α	В	Ιγ	minterm		
	0 0 1	0 1 0	0 1 0	AB AB AB		
Copyright © 2007 Elsevier	1 Y =	1 F(A, 1	1 B) =	A B	2-<8>	ELSEVIER

Boolea	an /	Axioms			
		Axiom		Dual	Name
	A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$	Binary field
	A2	$\overline{0} = 1$	A2′	$\overline{T} = 0$	NOT
	A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
	A4	$1 \bullet 1 = 1$	A4′	0 + 0 = 0	AND/OR
	A5	$0 \bullet 1 = 1 \bullet 0 =$	0 A5'	1 + 0 = 0 + 1 = 1	AND/OR
		Theorem		Dual	Name
_	T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
	T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
	Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
	Τ4		$\overline{\overline{B}} = B$		Involution
	T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements
Copyright © 2007 E	Elsevier				2-<1

T2: Null Element Theorem		
 B • 0 = B + 1 = 		
Copyright © 2007 Elsevier	2-<19>	FLSEVIER

TheoremDualNameT1 $B \cdot 1 = B$ T1' $B + 0 = B$ IdentityT2 $B \cdot 0 = 0$ T2' $B + 1 = 1$ Null ElementT3 $B \cdot B = B$ T3' $B + B = B$ IdempotencyT4 $\overline{B} = B$ InvolutionT5 $B \cdot \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements	lean ⁻	Theorer	ns: Su	mmary	
T1 $B \bullet 1 = B$ T1' $B + 0 = B$ IdentityT2 $B \bullet 0 = 0$ T2' $B + 1 = 1$ Null ElementT3 $B \bullet B = B$ T3' $B + B = B$ IdempotencyT4 $\overline{B} = B$ Involution		Theorem		Dual	Namo
T3 $B \bullet B = B$ T3' $B + B = B$ IdempotencyT4 $\overline{\overline{B}} = B$ Involution	T1		T1′		
T4 $\overline{\overline{B}} = B$ Involution	T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
	Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T5 $B \bullet \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements	T4		$\overline{\overline{B}} = B$		Involution
	Т5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements
	2007 Elsevier				2-<27>

Bool	ean Theorems of	f Sev	veral Variables	
	Theorem		Dual	Name
T6 T7	$B \bullet C = C \bullet B$ $(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T6' T7'	B + C = C + B $(B + C) + D = B + (C + D)$	Commutativity Associativity
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$ \begin{aligned} (B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) \\ = B \bullet C + \overline{B} \bullet D \end{aligned} $	T11′	$ \begin{aligned} (B + C) \bullet (\overline{B} + D) \bullet (C + D) \\ &= (B + C) \bullet (\overline{B} + D) \end{aligned} $	Consensus
T12		T12′	$\overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem
copyright ©	2 2007 Elsevier			2-<28>

Simplifying Boolean Expressions: Example 1		
• $Y = \overline{AB} + AB$		
Copyright © 2007 Elsevier 2-<2	2	58.81
opynyik@zoor_laenei ZKZ	7,2	ELSEVIER

• What is the Boolean expression for this circuit?

Bubble Pushing Rules Begin at the output of the circuit and work toward the inputs. Push any bubbles on the final output back toward the inputs. Draw each gate in a form so that bubbles cancel.

Circuit Schematics with Style

- Inputs are on the left (or top) side of a schematic
- Outputs are on the right (or bottom) side of a schematic
- Whenever possible, gates should flow from left to right
- Straight wires are better to use than wires with multiple corners

Copyright © 2007 Elsevier	2-<43>	ELSEV

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing *without* a dot make no connection

K-map • Circle 1's in adjacent squares • In the Boolean expression, include only the literals whose true and complement form are *not* in the circle AB А 0 0 В С Y 1 0 0 00 01 11 10 0 0 0 1 С 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 $Y = \overline{AB}$ Copyright © 2007 Elsevier 2-<53>

K-map Rules

Copyright © 2007 Elsevier

- Every 1 in a K-map must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges of the K-map
- A "don't care" (X) is circled only if it helps minimize the equation

2-<57>

Decoders • *N* inputs, 2^N outputs • One-hot outputs: only one output HIGH at once 2:4 Decoder Y_3 A_1 A_0 Y_0 Copyright © 2007 Elsevier 2-<71>

Timing

- Delay between input change and output changing
- How to build fast circuits?

Glitches

Copyright © 2007 Elsevier

• A *glitch* occurs when a single input change causes multiple output changes

Glitch Example • What happens when A = 0, C = 1, B falls? AB 01 00 11 10 С 0 0 0 1 0 1 1 $Y = \overline{A}\overline{B} + BC$ Copyright © 2007 Elsevier 2-<79>

Why Understand Glitches?

- Glitches don't cause problems because of synchronous design conventions (which we'll talk about in Chapter 3)
- But it's important to recognize a glitch when you see one in simulations or on an oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

