

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

Copyight 02007 Elsevier

The Game Plan

- The purpose of this course is that you:
- Learn what's under the hood of a computer

Microprocessors have revolutionized our world

- Learn the principles of digital design
- The semiconductor industry has grown from $\$ 21$
- Design and build a microprocessor billion in 1985 to $\$ 213$ billion in 2004

Abstraction

- Hiding details when they aren't important

The Three -Y's

- Hierarchy
- A system divided into modules and submodules
- Modularity
- Having well-defined functions and interfaces
- Regularity
- Encouraging uniformity, so modules can be easily reused
- Digital circuits are simpler to design than analog circuits - can build more sophisticated systems
- Digital systems replacing analog predecessors:
- I.e., digital cameras, digital television, cell phones, GD

1-<7>

\rightarrow elseviek

Discipline

- Intentionally restricting your design choices
- to work more productively at a higher level of abstraction
- Example: Digital discipline
- Considering discrete voltages instead of continuous voltages used by analog circuits

The Digital Abstraction

- Most physical variables are continuous, for example
- Voltage on a wire
- Frequency of an oscillation
- Position of a mass
- Instead of considering all values, the digital abstraction considers only a discrete subset of values

Example: Flintlock Rifle

- Modularity
- Function of stock: mount barrel and lock
- Interface of stock: length and location of mounting pins
- Regularity
- Interchangeable parts

[^0]

The Analytical Engine

- Designed by Charles Babbage from 1834 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

[^1]

Digital Discipline: Binary Values

- Typically consider only two discrete values:
- 1's and 0's
- 1, TRUE, HIGH
- 0, FALSE, LOW
- 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- Digital circuits usually depend on specific voltage levels to represent 1 and 0
- Bit: Binary digit

Copyight © 2007 Elsevier

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

[^2]
Powers of Two

- $2^{0}=$
- $2^{8}=$
- $2^{1}=$
- $2^{9}=$
- $2^{2}=$
- $2^{10}=$
- $2^{3}=$
- $2^{11}=$
- $2^{4}=$
- $2^{12}=$
- $2^{5}=$
- $2^{13}=$
- $2^{6}=$
- $2^{14}=$
- $2^{7}=$
- $2^{15}=$

Binary Values and Range

- N-digit decimal number
- Represents 10^{N} possible values
- Range is: [0, $\left.10^{N}-1\right]$
- For example, a 3-digit decimal number represents $10^{3}=$ 1000 possible values, with a range of $[0,999]$
- N-bit binary number
- Represents 2^{N} possible values
- Range is: [0, 2^{N} - 1]
- For example, a 3-digit binary number represents $2^{3}=8$ possible values, with a range of $[0,7]$ $\left(000_{2}\right.$ to $\left.111_{2}\right)$

Copyrigh © 2007 Elsevier

Hexadecimal Numbers

- Base 16
- Shorthand to write long binary numbers

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
- Convert $4 \mathrm{AF}_{16}$ (also written 0x4AF) to binary
- Hexadecimal to decimal conversion:
- Convert 0x4AF to decimal

Powers of Two

- $2^{10}=1$ kilo ≈ 1000 (1024)
- $2^{20}=1$ mega ≈ 1 million $(1,048,576)$
- $2^{30}=1$ giga ≈ 1 billion $(1,073,741,824)$

Bits, Bytes, Nibbles..

- Bits

$$
\underset{\begin{array}{c}
\text { most } \\
\text { significant } \\
\text { bit }
\end{array}}{10010110} \underset{\begin{array}{c}
\text { least } \\
\text { significant } \\
\text { bit }
\end{array}}{10 .}
$$

- Bytes \& Nibbles
$\underbrace{10010110}_{\text {byte }}$
- Bytes

Copyight 2007 Elsevier
 A EnC

Estimating Powers of Two

- What is the value of 2^{24} ?
- How many values can a 32-bit variable represent?

Addition		
- Decimal	$\begin{array}{r} 11 \leftarrow \text { carries } \\ 3734 \\ +\quad 5168 \\ \hline 8902 \end{array}$	
- Binary	$\begin{array}{r} 11 \leftarrow \text { carries } \\ 1011 \\ +\quad 0011 \\ \hline 1110 \end{array}$	
Coprosme20x Eseover		11.38

Overflow

- Digital systems operate on a fixed number of bits
- Addition overflows when the result is too big to fit in the available number of bits
- See previous example of $11+6$

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two’s Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
- Positive number: sign bit $=0$
- Negative number: sign bit=1 $A:\left\{a_{N-1}, a_{N-2}, \cdots a_{2}, a_{1}, a_{0}\right\}$

$$
A=(-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_{i} 2^{i}
$$

$$
10100 \text { (wrong!) }
$$

- Example, 4-bit sign/mag representations of ± 6 :

$$
\begin{aligned}
& +6= \\
& -6=
\end{aligned}
$$ Copyight © 2007 Elsevier

Sign/Magnitude Numbers

- Problems:
- Addition doesn't work, for example -6 + 6:

$$
1110
$$

$$
+0110
$$

- Range of an N-bit sign/magnitude number:
- Two representations of $0(\pm 0)$:

1000
0000

Two's Complement Numbers

- Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}
$A=a_{n-1}\left(-2^{n-1}\right)+\sum_{i=0}^{n-2} a_{i} 2^{i}$
- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, $0=$ positive)
- Range of an N-bit two's comp number:

[^3]\qquad

"Taking the Two's Complement"

- Flip the sign of a two's complement number

Two's Complement Examples

- Method:

1. Invert the bits
2. Add 1

- Example: Flip the sign of $3_{10}=0011_{2}$

- Add -2 + 3 using two’s complement numbers

$$
1110
$$

$$
\begin{array}{r}
+\quad 0011 \\
\hline
\end{array}
$$

- Take the two's complement of $6_{10}=0110_{2}$
- What is the decimal value of 1001_{2} ?

Increasing Bit Width

- A value can be extended from N bits to M bits (where $M>N$) by using:
- Sign-extension
- Zero-extension

Sign-Extension

- Sign bit is copied into most significant bits.
- Number value remains the same.
- Example 1:
- 4-bit representation of $3=0011$
- 8 -bit sign-extended value: 00000011
- Example 2:
- 4-bit representation of $-5=1011$
- 8-bit sign-extended value: 11111011

Number System Comparison

Number System	Range
Unsigned	$\left[0,2^{N}-1\right]$
Sign/Magnitude	$\left[-\left(2^{N-1}-1\right), 2^{N-1}-1\right]$
Two's Complement	$\left[-2^{N-1}, 2^{N-1}-1\right]$

For example, 4-bit representation:

Logic Levels

- Define discrete voltages to represent 1 and 0
- For example, we could define:
- 0 to be ground or 0 volts
- 1 to be $V_{D D}$ or 5 volts
- But what if our gate produces, for example, 4.99 volts? Is that a 0 or a 1 ?
- What about 3.2 volts?

Logic Levels

- Define a range of voltages to represent 1 and 0
- Define different ranges for outputs and inputs to allow for noise in the system
- Noise is anything that degrades the signal
- For example, a gate (driver) could output a 5 volt signal but, because of losses in the wire and other noise, the signal could arrive at the receiver with a degraded value, for example, 4.5 volts

The Static Discipline

- Given logically valid inputs, every circuit element must produce logically valid outputs
- Discipline ourselves to use limited ranges of voltages to represent discrete values

$V_{D D}$ Scaling

- Chips in the 1970's and 1980's were designed using $V_{D D}=5 \mathrm{~V}$
- As technology improved, V_{DD} dropped
- Avoid frying tiny transistors
- Save power
- 3.3 V, $2.5 \mathrm{~V}, 1.8 \mathrm{~V}, 1.5 \mathrm{~V}, 1.2 \mathrm{~V}, 1.0 \mathrm{~V}$, .
- Be careful connecting chips with different supply voltages
Chips operate because they contain magic smoke
Proof:
- if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	$V_{D D}$	$V_{I L}$	$V_{I H}$	$V_{O L}$	$V_{O H}$
TTL	$5(4.75-5.25)$	0.8	2.0	0.4	2.4
CMOS	$5(4.5-6)$	1.35	3.15	0.33	3.84
LVTTL	$3.3(3-3.6)$	0.8	2.0	0.4	2.4
LVCMOS	$3.3(3-3.6)$	0.9	1.8	0.36	2.7

Transistors

- Logic gates are usually built out of transistors
- Transistor is a three-ported voltage-controlled switch
- Two of the ports are connected depending on the voltage on the third port
- For example, in the switch below the two terminals (d and s) are connected (ON) only when the third terminal (g) is 1

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors are built out of silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
- n-type (free negative charges, electrons)
- p-type (free positive charges, holes)

Copyright © 2007 Elsevier

MOS Transistors

- Metal oxide silicon (MOS) transistors:
- Polysilicon (used to be metal) gate
- Oxide (silicon dioxide) insulator
- Doped silicon

Transistors: pMOS

- pMOS transistor is just the opposite
- ON when Gate $=0$
- OFF when Gate $=1$

Transistor Function

- nMOS transistors pass good 0's, so connect source to GND
- pMOS transistors pass good 1's, so connect source to $V_{D D}$

NOR Gate

How do you build a three-input NAND gate?

Other CMOS Gates	
How	

Power Consumption

- Power = Energy consumed per unit time
- Two types of power consumption:
- Dynamic power consumption
- Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
- The energy required to charge a capacitance, C, to $V_{D D}$ is $C V_{D D}{ }^{2}$
- If the circuit is running at frequency f, and all transistors switch (from 1 to 0 or vice versa) at that frequency, the capacitor is charged $f / 2$ times per second (discharging from 1 to 0 is free).
- Thus, the total dynamic power consumption is:

$$
P_{\text {dynamic }}=1 / 2 C V_{D D}^{2} f
$$

Static Power Consumption

- Power consumed when no gates are switching
- It is caused by the quiescent supply current, $I_{D D}$, also called the leakage current
- Thus, the total static power consumption is:

$$
P_{\text {static }}=\mathrm{I}_{D D} V_{D D}
$$

- Estimate the power consumption of a wireless handheld computer
$-V_{D D}=1.2 \mathrm{~V}$
- $C=20 \mathrm{nF}$
$-f=1 \mathrm{GHz}$
$-I_{D D}=20 \mathrm{~mA}$

Power Consumption Example

[^0]: Copyighte 2007 Elsevier

[^1]: Copyight $\odot 2007$ Elsevier

[^2]: Copyight © 2007 Elsevier

[^3]: Copyright © 2007 Elsevier

