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Chapter 1 :: From Zero to One

Digital Design and Computer Architecture 
David Money Harris and Sarah L. Harris
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Chapter 1 :: Topics

• Background

• The Game Plan

• The Art of Managing Complexity

• The Digital Abstraction

• Number Systems

• Logic Gates

• Logic Levels

• CMOS Transistors

• Power Consumption
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Background

• Microprocessors have revolutionized our world
– Cell phones, Internet, rapid advances in medicine, etc.

• The semiconductor industry has grown from $21 
billion in 1985 to $213 billion in 2004
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The Game Plan

• The purpose of this course is that you:
– Learn what’s under the hood of a computer

– Learn the principles of digital design

– Design and build a microprocessor
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The Art of Managing Complexity

• Abstraction

• Discipline

• The Three –Y’s
– Hierarchy

– Modularity

– Regularity
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Abstraction

• Hiding details when 
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Discipline

• Intentionally restricting your design choices 
– to work more productively at a higher level of 

abstraction

• Example: Digital discipline
– Considering discrete voltages instead of continuous 

voltages used by analog circuits

– Digital circuits are simpler to design than analog 
circuits – can build more sophisticated systems

– Digital systems replacing analog predecessors:
• I.e., digital cameras, digital television, cell phones, CDs
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The Three -Y’s

• Hierarchy
– A system divided into modules and submodules

• Modularity
– Having well-defined functions and interfaces

• Regularity
– Encouraging uniformity, so modules can be easily 

reused
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Example: Flintlock Rifle

• Hierarchy
– Three main modules: 

lock, stock, and 
barrel

– Submodules of lock: 
hammer, flint, 
frizzen, etc. 
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Example: Flintlock Rifle

• Modularity
– Function of stock: 

mount barrel and 
lock

– Interface of stock: 
length and location 
of mounting pins

• Regularity
– Interchangeable 

parts

Copyright © 2007 Elsevier 1-<11>

The Digital Abstraction

• Most physical variables are continuous, for 
example
– Voltage on a wire

– Frequency of an oscillation

– Position of a mass

• Instead of considering all values, the digital 
abstraction considers only a discrete subset of 
values
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The Analytical Engine

• Designed by Charles 
Babbage from 1834 –
1871

• Considered to be the first 
digital computer

• Built from mechanical 
gears, where each gear 
represented a discrete 
value (0-9)

• Babbage died before it 
was finished
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Digital Discipline: Binary Values

• Typically consider only two discrete values:
– 1’s and 0’s

– 1, TRUE, HIGH

– 0, FALSE, LOW

• 1 and 0 can be represented by specific voltage 
levels, rotating gears, fluid levels, etc. 

• Digital circuits usually depend on specific voltage 
levels to represent 1 and 0

• Bit: Binary digit

Copyright © 2007 Elsevier 1-<14>

• Born to working class parents

• Taught himself mathematics and 
joined the faculty of Queen’s 
College in Ireland. 

• Wrote An Investigation of the Laws 
of Thought (1854)

• Introduced binary variables

• Introduced the three fundamental 
logic operations: AND, OR, and 
NOT.

George Boole, 1815 - 1864
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• Decimal numbers

• Binary numbers

Number Systems
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• 20 =

• 21 = 

• 22 =

• 23 =

• 24 = 

• 25 = 
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Powers of Two

• 28 =
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• 214 =

• 215 =
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• Decimal to binary conversion:
– Convert 101012 to decimal

• Decimal to binary conversion:
– Convert 4710 to binary

Number Conversion
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Binary Values and Range

• N-digit decimal number 
– Represents 10N possible values

– Range is: [0, 10N - 1]

– For example, a 3-digit decimal number represents 103 = 
1000 possible values, with a range of [0, 999]

• N-bit binary number
– Represents 2N possible values

– Range is: [0, 2N - 1]

– For example, a 3-digit binary number represents 23 = 8 
possible values, with a range of [0, 7] 

(0002 to 1112)
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Hexadecimal Numbers
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Hexadecimal Numbers

• Base 16

• Shorthand to write long binary numbers
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• Hexadecimal to binary conversion:
– Convert 4AF16 (also written 0x4AF) to binary

• Hexadecimal to decimal conversion:
– Convert 0x4AF to decimal

Hexadecimal to Binary Conversion
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Bits, Bytes, Nibbles…

• Bits

• Bytes & Nibbles

• Bytes

10010110
nibble

byte

CEBF9AD7
least

significant
byte

most
significant

byte

10010110
least

significant
bit

most
significant

bit
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Powers of Two

• 210 = 1 kilo ≈ 1000  (1024)

• 220 = 1 mega ≈ 1 million  (1,048,576)

• 230 = 1 giga ≈ 1 billion (1,073,741,824)

Copyright © 2007 Elsevier 1-<29>

Estimating Powers of Two

• What is the value of 224?

• How many values can a 32-bit variable 
represent?



7

Copyright © 2007 Elsevier 1-<31>

• Decimal

• Binary

Addition

3734
5168+
8902

carries 11

1011
0011+
1110

 11 carries
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• Add the following 
4-bit binary 
numbers

• Add the following 
4-bit binary 
numbers

Binary Addition Examples

1001
0101+

1011
0110+
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Overflow

• Digital systems operate on a fixed number of 
bits

• Addition overflows when the result is too big 
to fit in the available number of bits

• See previous example of 11 + 6
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Signed Binary Numbers

• Sign/Magnitude Numbers

• Two’s Complement Numbers
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Sign/Magnitude Numbers

• 1 sign bit, N-1 magnitude bits

• Sign bit is the most significant (left-most) bit
– Positive number: sign bit = 0

– Negative number: sign bit = 1

• Example, 4-bit sign/mag representations of ± 6:

+6 =

- 6 =

• Range of an N-bit sign/magnitude number:
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Sign/Magnitude Numbers

• Problems:
– Addition doesn’t work, for example -6 + 6:

1110                   

+ 0110

10100 (wrong!)
– Two representations of 0 (± 0):

1000                   

0000
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Two’s Complement Numbers

• Don’t have same problems as sign/magnitude 
numbers:
– Addition works

– Single representation for 0
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Two’s Complement Numbers

• Same as unsigned binary, but the most 
significant bit (msb) has value of -2N-1

• Most positive 4-bit number:

• Most negative 4-bit number:

• The most significant bit still indicates the sign 
(1 = negative, 0 = positive)

• Range of an N-bit two’s comp number:
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“Taking the Two’s Complement”

• Flip the sign of a two’s complement number

• Method:
1. Invert the bits

2. Add 1

• Example: Flip the sign of 310 = 00112
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Two’s Complement Examples

• Take the two’s complement of 610 = 01102

• What is the decimal value of 10012?
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• Add 6 + (-6) using two’s complement 
numbers

• Add -2 + 3 using two’s complement 
numbers

Two’s Complement Addition

+
0110
1010

+
1110
0011
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Increasing Bit Width

• A value can be extended from N bits to M bits 
(where M > N) by using:
– Sign-extension

– Zero-extension
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Sign-Extension

• Sign bit is copied into most significant bits.

• Number value remains the same.

• Example 1:
– 4-bit representation of 3 = 0011

– 8-bit sign-extended value: 00000011

• Example 2:
– 4-bit representation of -5 = 1011

– 8-bit sign-extended value: 11111011
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Number System Comparison

-8

1000 1001
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Sign/Magnitude

Unsigned

[0, 2N-1]Unsigned

[-(2N-1-1), 2N-1-1]Sign/Magnitude

[-2N-1, 2N-1-1]Two’s Complement

RangeNumber System

For example, 4-bit representation:
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Logic Gates

• Perform logic functions: 
– inversion (NOT), AND, OR, NAND, NOR, etc.

• Single-input: 
– NOT gate, buffer

• Two-input: 
– AND, OR, XOR, NAND, NOR, XNOR

• Multiple-input
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Single-Input Logic Gates

NOT

Y = A

A Y
0 1
1 0

A Y

BUF

Y = A

A Y
0 0
1 1

A Y
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Two-Input Logic Gates

AND

Y = AB

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A
B

Y

OR

Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A
B

Y
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More Two-Input Logic Gates

XNOR

Y = A + B

A B Y
0 0
0 1
1 0
1 1

A
B

Y

XOR NAND NOR

Y = A + B Y = AB Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

A
B

Y A
B

Y A
B

Y
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Multiple-Input Logic Gates

NOR3

Y = A+B+C

B C Y
0 0
0 1
1 0
1 1

A
B Y
C

A
0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

AND4

Y = ABCD

A
B YC
D

• Multi-input XOR: Odd parity
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Logic Levels

• Define discrete voltages to represent 1 and 0

• For example, we could define: 
– 0 to be ground or 0 volts

– 1 to be VDD or 5 volts

• But what if our gate produces, for example, 4.99 
volts?  Is that a 0 or a 1?

• What about 3.2 volts?
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Logic Levels

• Define a range of voltages to represent 1 and 0

• Define different ranges for outputs and inputs to 
allow for noise in the system

• Noise is anything that degrades the signal

• For example, a gate (driver) could output a 5 
volt signal but, because of losses in the wire and 
other noise, the signal could arrive at the 
receiver with a degraded value, for example, 4.5 
volts

Driver Receiver
Noise

5 V 4.5 V Copyright © 2007 Elsevier 1-<62>

The Static Discipline

• Given logically valid inputs, every circuit 
element must produce logically valid outputs

• Discipline ourselves to use limited ranges of 
voltages to represent discrete values
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Logic Levels

Driver Receiver

Forbidden
Zone

NML

NMH

Input CharacteristicsOutput Characteristics

VO H

VDD

VO L

GND

VIH

VIL

Logic High
Input Range

Logic Low
Input Range

Logic High
Output Range

Logic Low
Output Range
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Noise Margins

Driver Receiver

Forbidden
Zone

NML

NMH

Input CharacteristicsOutput Characteristics

VO H

VDD

VO L

GND

VIH

VIL

Logic High
Input Range

Logic Low
Input Range

Logic High
Output Range

Logic Low
Output Range

NMH = VOH – VIH

NML =  VIL – VOL
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DC Transfer Characteristics

VDD

V(A)

V(Y)

VOH VDD

VOL

VIL, VIH

0

A Y

VDD

V(A)

V(Y)

VOH

VDD

VOL

VIL VIH

Unity Gain
Points

Slope = 1

0
VDD / 2

Ideal Buffer:                         Real Buffer:

NMH = NML = VDD/2 NMH , NML < VDD/2
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DC Transfer Characteristics

Forbidden
Zone

NML

NMH

Input CharacteristicsOutput Characteristics
VDD
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GND

VIH
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VO H

A Y

VDD

V(A)

V(Y)

VOH

VDD

VOL

VIL VIH

Unity Gain
Points

Slope = 1

0
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VDD Scaling

• Chips in the 1970’s and 1980’s were designed 
using VDD = 5 V

• As technology improved, VDD dropped
– Avoid frying tiny transistors
– Save power

• 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, …
• Be careful connecting chips with different 

supply voltages
Chips operate because they contain magic smoke
Proof: 

– if the magic smoke is let out, the chip stops working
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Logic Family Examples

2.70.361.80.93.3 (3 - 3.6)LVCMOS

2.40.42.00.83.3 (3 - 3.6)LVTTL

3.840.333.151.355 (4.5 - 6)CMOS

2.40.42.00.85 (4.75 - 5.25)TTL

VOHVOLVIHVILVDDLogic Family
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Transistors

• Logic gates are usually built out of transistors

• Transistor is a three-ported voltage-controlled switch
– Two of the ports are connected depending on the voltage 

on the third port

– For example, in the switch below the two terminals (d and 
s) are connected (ON) only when the third terminal (g) is 1

g

s

d

g = 0

s

d

g = 1

s

d

OFF ON
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Robert Noyce, 1927 - 1990

• Nicknamed “Mayor of Silicon 
Valley”

• Cofounded Fairchild 
Semiconductor in 1957

• Cofounded Intel in 1968

• Co-invented the integrated circuit
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Silicon

Silicon Lattice

Si SiSi

Si SiSi

Si SiSi

As SiSi

Si SiSi

Si SiSi

B SiSi

Si SiSi

Si SiSi

-

+

+

-

Free electron Free hole

n-Type p-Type

• Transistors are built out of silicon, a semiconductor

• Pure silicon is a poor conductor (no free charges)

• Doped silicon is a good conductor (free charges)
– n-type (free negative charges, electrons)

– p-type (free positive charges, holes)
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MOS Transistors

n

p

gatesource drain

substrate

SiO2

nMOS

Polysilicon

n

gate

source drain

• Metal oxide silicon (MOS) transistors: 
– Polysilicon (used to be metal) gate

– Oxide (silicon dioxide) insulator

– Doped silicon
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Transistors: nMOS

n

p

gate
source drain

substrate

n n

p

gatesource drain

substrate

n

GND

GND

VDD

GND

+++++++
- - - - - - -

channel

Gate = 0, so it is OFF 
(no connection between 
source and drain)

Gate = 1, so it is ON  
(channel between 
source and drain)
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Transistors: pMOS

• pMOS transistor is just the opposite
– ON when Gate = 0

– OFF when Gate = 1

SiO2

n

gatesource drain
Polysilicon

p p

gate

source drain

substrate
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Transistor Function

g

s

d

g = 0

s

d

g = 1

s

d

g

d

s

d

s

d

s

nMOS

pMOS

OFF ON

ON OFF
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Transistor Function

• nMOS transistors pass good 0’s, so connect source 
to GND

• pMOS transistors pass good 1’s, so connect source 
to VDD

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network
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CMOS Gates: NOT Gate

VDD

A Y

GND

N1

P1

NOT

Y = A

A Y
0 1
1 0

A Y

1

0

YN1P1A
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CMOS Gates: NAND Gate

A

B

Y

N2

N1

P2 P1
NAND

Y = AB

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

A
B

Y

11

01

10

00

YN2N1P2P1BA
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CMOS Gate Structure

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network
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NOR Gate

How do you build a three-input NAND gate?
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Other CMOS Gates

How do you build a two-input AND gate?

Copyright © 2007 Elsevier 1-<86>

Transmission Gates

• nMOS pass 1’s poorly

• pMOS pass 0’s poorly

• Transmission gate is a better switch
– passes both 0 and 1 well

• When EN = 1, the switch is ON:
– EN = 0 and A is connected to B

• When EN = 0, the switch is OFF:
– A is not connected to B

A B

EN

EN
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Pseudo-nMOS Gates

• nMOS gates replace the pull-up network with a 
weak pMOS transistor that is always on

• The pMOS transistor is called weak because it 
pulls the output HIGH only when the nMOS
network is not pulling it LOW 

Y

inputs nMOS
pull-down
network

weak
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Pseudo-nMOS Example

Pseudo-nMOS NOR4

A B
Y

weak

C D
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Gordon Moore, 1929 -

• Cofounded Intel in 
1968 with Robert 
Noyce. 

• Moore’s Law: the 
number of transistors 
on a computer chip 
doubles every year 
(observed in 1965)

• Since 1975, transistor 
counts have doubled 
every two years.
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Moore’s Law

• “If the automobile had followed the same development cycle as 
the computer, a Rolls-Royce would today cost $100, get one 
million miles to the gallon, and explode once a year . . .”

– Robert Cringley
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Power Consumption

• Power = Energy consumed per unit time

• Two types of power consumption:
– Dynamic power consumption

– Static power consumption
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Dynamic Power Consumption

• Power to charge transistor gate capacitances

• The energy required to charge a capacitance, C, to 
VDD is CVDD

2

• If the circuit is running at frequency f, and all 
transistors switch (from 1 to 0 or vice versa) at 
that frequency, the capacitor is charged f/2 times 
per second (discharging from 1 to 0 is free).

• Thus, the total dynamic power consumption is:

Pdynamic = ½CVDD
2f
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Static Power Consumption

• Power consumed when no gates are switching

• It is caused by the quiescent supply current, IDD, 
also called the leakage current

• Thus, the total static power consumption is:

Pstatic = IDDVDD
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Power Consumption Example

• Estimate the power consumption of a wireless 
handheld computer
– VDD = 1.2 V

– C = 20 nF

– f = 1 GHz

– IDD = 20 mA


