
Simplified Checkers
Project Report

April 18, 2011

Max Korbel and Ian Jimenez

E158: Introduction to CMOS VLSI Design

Korbel, Jimenez 1

Introduction

This project is a rule checker for “simplified checkers”. The rule checker was

implemented in a .6 µm process on a 1.5 X 1.5 mm 40-pin MOSIS “TinyChip”. The goal of this

project was to create a system which was able to recall the state of a game and then insure that

any moves entered are correct based on the game state as it progresses. Simplified checkers rules

were chosen over standard checkers rules due to concerns about design time and size constraints.

We selected to not include forced jumps, double jumps, Kings, and checking the board state to

see if a player has won. These modified rules ensured the design will fit in the “TinyChip.” The

final result provides a resource for people seeking to learn to play checkers as well as for

professional simplified checkers players (if our version ever catches on!) to confirm they are

appropriately playing the game.

Functional Specifications

 The chip is designed to take in two three bit binary numbers which are used to represent

the row and column which a piece inhabits. The user then presses the enter button and enters the

values for the desired final position. The numbering scheme of the game board is shown in

Figure 1. Upon the next press of the enter button, the controller advances over a number of

cycles through a finite state machine (Table 1) which is used to verify that the move the player

selected is valid. The chip checks for single jumps and moves which are not jumps. As

mentioned before, kings, forced available jumps, and double jumps are not legal in this game. If

a move is invalid, the finite state machine enters an error state and an error light is activated and

until the user pushes the enter button again. After pushing enter, the system is ready to accept a

new move. If the clear button is pressed the turn will reset allow a user to pick a new piece. If

the reset button is pressed, the entire game state is reset and the memory is cleared back to a new

game set up. An LED array of lights displaying the current board state was considered, but it

was decided that implementation would overcomplicate the design and make testing

unnecessarily difficult. A list of ports and their intended uses is shown in Table 2.

State Logic

0: Read Source Read in the piece that the player wants to move. When the

player presses enter, move on to Read Destination (1).

1: Read Destination Read in the location that the player wants to move to.

2: Check Move Check the move against rules of the game to make sure it is a

valid move. If it’s not valid, go to Error (7). If it is valid, then

we need to determine if it is a short move or a long move

(jumping a piece). If it’s a short move, go to Write (4).

Otherwise, if it’s a long move, we need to do some more logic

and jump to Check Long Move (3).

3: Check Long Move Checks if it is jumping the proper color piece and other small

checks for the rules. If all is well, then continue to Clear

Middle (6) to remove the piece we are jumping over from the

board. Otherwise, go to Error (7).

Korbel, Jimenez 2

4: Write Writes the moved piece to its new location. Then continue to

Clear (5).

5: Clear Erase the piece from where it used to be before it moved.

Then continue to Done (8).

6: Clear Middle Remove the piece we are jumping over from the board, then

continue to Write (4).

7: Error Something bad happened. Maybe a broken rule. Light up the

error light and wait for enter, then if enter is pressed go back to

the beginning of the turn Read Source (0).

8: Done We are now done with this turn. Change the turn to the

opposite color and move back to Read Source (0) to get ready

for the next move input from the opposite player.

Table 1: Controller finite state machine logic

Figure 1: The game board.

Shows the number scheme for the board as well as a few examples of addresses in memory. The

board is sideways, so rows go vertically and columns are horizontal. Red starts on the left three

rows of the board while black starts on the right three rows.

 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

00000

10001

01011

11111

Korbel, Jimenez 3

Num Pins Name(Type) Description

3 3 Vdd (Input/Output)

3 3 GND (Input/Output)

3 3 Usr-Row (Input) Accepts user’s row input to move pieces

3 3 Usr-Col (Input) Accepts user’s column input to move pieces

1 Red turn indicator (Output) Indicates it is red’s turn

1 Black turn indicator (Output) Indicates it is black’s turn

1 Error (Output) Indicates error with move placement

1 Reset(Input) Restarts board state to a new game

1 Enter(Input) Indicates that entry of position complete

1 Clear (Input) Clears entry of active piece on turn

1 Phi 1 (Input) Non-overlapping clock (Phase 1)

1 Phi 2 (Input) Non-overlapping clock (Phase 2)

20 pins

Table 2: Pin out. Locations for each pin on padframe shown in Figure 3.

Floor Plan

We have two major portions of the design. The first is mem which is the main memory

used to store the positions of all pieces on the board. In order to know the three possible states of

a position we needed 64 bits of information. The memory was therefore organized into two 32:1

SRAM arrays with 5 bit addresses for either red or black pieces on the board. Each of the two

arrays was organized into eight 4-cell blocks to make layout simpler with an 8:1 multiplexer to

give the correct output. Remember, half the board does not require a space in memory because

you cannot move onto black squares. The controller was synthesized and placed above the

memory cell (see Appendix 5 for actual layout).

Since the time of the proposal we have undergone some changes to the overall scheme

incorporating the two 5:1 flip-flops in to the FSM and absorbing the 64:1 multiplexer into the

memory array (turned into SRAM instead of a large array of flip-flops). Even taking these into

account the memory array it is about 6 times the size we anticipated (see Figure 2). One reason

is that while the basis for sizing was the MIPS processor, our memory incorporates logic specific

to the simplified checkers rules. For example, some cells were made resettable and others

settable to allow for initial game state to have pieces in appropriate starting positions. In

addition, zipper logic is non-optimal to decrease design time to a make certain it would be

possible to finish the layout in time. We could have reduced the size and increased the density of

the blocks by more efficiently placing and routing since a large amount of space was taken with

filler in order to maintain continuity of the power and ground rows through the blocks. Some

issues were not reviewed since they would have required significant amounts of redesign and the

chosen final design still easily fits within the bounds of the pad frame. A tradeoff was made

between design time and space utilization.

Korbel, Jimenez 4

Figure 2: Layout sizing (drawn to scale).

Light blue is proposal approximations of sizes while light green is sizes for the final layout.

Figure 3: Pin – Pin Number correspondence pin out diagram

Korbel, Jimenez 5

Verification

 The Verilog code for our checkers chip passes our self checking testbench (Appendix 2)

using our compelling test vectors (Appendix 3) which are explained in Table 4. Both the

synthesized controller schematic and the handmade memory for the chip pass this same

testbench on the same set of test vectors. The layout passes DRC, showing that our chip, if

manufactured, would not have any physical spacing flaws that would cause definite

malfunctions. The layout also passes LVS, which means that it matches our schematic and

should therefore function the same way as the schematic does. There were no analog blocks so

HSPICE simulations were not necessary.

Post-fabrication test plan

 If this chip were to be fabricated, it would be quite easy to test. The only outputs are the

turn indicators and the error light and the only inputs are the clocks, clear, error, enter, and the

binary location selector (6 bits). One could use the same test vectors as used in the self checking

testbench during verification for the chip. Another good test would be to play through a game of

simplified checkers and make sure that the rule checks are valid at each step.

Test

Vector

Turn Source Dest Description Error

Light

0 Red (2,0) (3,1) Move one square legally OFF

1 Black (5,3) (4,2) Move one square legally OFF

2 Red (2,6) (3, 5) Move one square legally OFF

3 Black (4,2) (2,0) Jump over first red piece moved and capture it OFF

4 Red (3,5) (2,6) Illegally try to move backwards to original location ON

5 Red (3,5) Press "clear" mid entry OFF

6 Red Press "reset" before entry OFF

7 Red (0,6) (1,5) Illegally move into own piece 1 square ON

8 Red (1,5) (3,7) Illegally jump your own piece ON

9 Red (2,4) (3,5) Move one square legally OFF

10 Black (5,1) (2,4) Illegally move 3 squares (to empty one) ON

11 Black (5,5) (4,4) Move one square legally OFF

12 Red (2,0) (3,1) Move one square legally OFF

13 Black (4,4) (3,5) Illegally move into an enemy ON

Korbel, Jimenez 6

14 Black (4,4) (2,6) Illegally jump over enemy into an enemy ON

15 Black (7,7) (4,0) Illegally move like a idiot (far away, non-diagonal,

completely illegal)

ON

16 Black (5,2) Illegal src selection ON

17 Black (5,3) (5,2) Illegal dest selection ON

18 Black (4,4) (5,5) Illegally try to move backwards ON

19 Black (6,6) (5,5) Legally move where another piece has been and left OFF

20 Red (7,1) Illegally try to select enemy piece ON

Table 4: Test vectors explanation. Actual test vectors in Appendix 3.

Design Time

 A summary of design time for different components of the project is shown in Table 5.

Project Proposal 2.5 hours

Verilog 35 hours

Schematic 25 hours

Memory redesign 10 hours

Layout 40 hours

Total ~112.5 hours

Table 5: Time spent on this project.

File Locations

All files are located on chips.eng.hmc.edu in the locations listed in Table 6. Many of

these files can also be found in the appendices.

Item Location

Verilog code (memory) /home/mkorbel/VLSI/Final_Project/verilog/checkersmem.sv

Verilog code

(controller)

/home/mkorbel/VLSI/Final_Project/verilog/controller.sv

Verilog code (main) /home/mkorbel/VLSI/Final_Project/verilog/checkers.sv

Testbench /home/mkorbel/VLSI/Final_Project/chip.template

Test vectors /home/mkorbel/VLSI/Final_Project/checkers.tv

Synthesis results /home/mkorbel/VLSI/Final_Project/synthesis

All Cadence libraries /home/mkorbel/VLSI/IC_CAD/cadence/checkers

CIF /home/mkorbel/VLSI/IC_CAD/cadence/checkers_cifin

PDF of chip plot /home/mkorbel/VLSI/Final_Project/chip.pdf

PDF of this report /home/mkorbel/VLSI/Final_Project/checkers_korbel_jimenez.pdf

Table 6: List of files and their locations

Korbel, Jimenez 7

Appendices

Appendix 1: Verilog code

//--

// checkers.sv

// Max Korbel and Ian Jimenez

// April 18, 2011

// VLSI Final Project: Simplified Checkers

// The main file for checkers

//--

`include "checkersmem.sv"

`include "controller.sv"

module checkers(input logic phi1, phi2, reset,

 input logic enter, clr,

 input logic [2:0] usrrow, usrcol,

 output logic blacktind, redtind,

 output logic err);

 logic memwrite;

 logic [4:0] addr;

 logic [1:0] datain;

 logic turn;

 //Creates the controller for the system

 controller c(phi1,phi2,reset,usrrow,usrcol,

 enter,clr,r,b,err,memwrite,addr,datain,turn);

 //Creates memory block

 mem gamemem(phi2,reset, memwrite,addr,datain,r,b);

endmodule

Korbel, Jimenez 8

//--

// checkersmem.sv

// Max Korbel and Ian Jimenez

// April 18, 2011

// VLSI Final Project: Simplified Checkers

// This file is the memory for checkers.sv

//--

//datain:

// 00 -> nothing in square

// 01 -> black in square

// 10 -> red in square

module mem (input logic clk, reset,

 input logic memwrite,

 input logic [4:0] addr,

 input logic [1:0] datain,

 output logic r, b);

 // instantiate the memory arrays

 logic [31:0] RAMblack, RAMred;

 always_ff @(posedge clk or posedge reset)

 begin

 if (reset) begin

 // set the two memories to start with initial piece

locations

 RAMblack<=32'b11111111111100000000000000000000;

 RAMred <=32'b00000000000000000000111111111111;

 end

 else if (memwrite) begin // writing

 RAMblack[addr[4:0]] <= datain[0];

 RAMred[addr[4:0]] <= datain[1];

 end

 else begin // reading

 r <= RAMred[addr[4:0]];

 b <= RAMblack[addr[4:0]];

 end

 end

endmodule

Korbel, Jimenez 9

//--

// controller.sv

// Max Korbel and Ian Jimenez

// April 18, 2011

// VLSI Final Project: Simplified Checkers

// Serves as controller for checkersmem and as rule checker

//--

module controller(input logic phi1,phi2, reset,

 input logic [2:0] usrrow, usrcol,

 input logic enter, clr,r,b,

 output logic err,

 output logic memwrite,

 output logic [4:0] addr,

 output logic [1:0] datain,

 output logic turn);

 //Declarations

 logic [5:0] src, dest; //Signal from Source and Destination

 logic [1:0] distance, adrctrl; //represents distance of move

 logic storesrc, storedst; //controls when info is stored

 logic [5:0] mid; //represents middle peice

 logic [3:0] state, nextstate; //the current state and the next state

 logic [6:0] controls; //bus holding a bunch of control signals

 logic [5:0] longloc; //concatenated row and column

 logic [5:0] decinp; //a source or destination to be passed

 logic [5:0] regnum; //values from src or dest

 logic turnen; //indicates end or turn changing turn

 logic fsmreset; //combins clr and reset

 //For Turn

 // 0 red

 // 1 black

 assign blacktind = turn;

 assign redtind = ~turn;

 assign longloc = {usrrow, usrcol}; //concatenation of the row and column

 assign fsmreset = (reset | clr); //if the FSM should reset

 //STATES

 parameter RDSOURCE = 4'b0000; // Read the source

 parameter RDDEST = 4'b0001; // Read the dest, check the piece at loc

 parameter CHKMOVE = 4'b0010; // Checks if move is open and gets dist

 parameter CHKLONG = 4'b0011; // If its skipping, check more stuff

 parameter WRITE = 4'b0100; // Done, write everything

 parameter CLEAR = 4'b0101; // Done, now clear old

 parameter CLEARMID = 4'b0110; // Removes middle piece during jump

 parameter ERR = 4'b0111; // If there is an error anywhere

 parameter DONE = 4'b1000; // Change the turn and go back to 0

 //DISTS

 parameter ZERODIST = 2'b00; // There was an error checking the move

 parameter ONEDIST = 2'b01; // Moving one square

 parameter TWODIST = 2'b10; // Jumping

Korbel, Jimenez 10

 always_comb

 case(state)

 RDSOURCE: begin

 // Checks if a vaild source on board (odd odd or even even)

 if(enter & ~clr) begin

 if (~(usrrow[0] ^ usrcol[0]))

nextstate <= RDDEST;

 else

 nextstate <= ERR;

 end

 else

 nextstate<=RDSOURCE;

 end

RDDEST: //checks jump is over enemy

if (b == turn & r == ~turn) begin

 // Checks if a vaild dest on board (odd odd or even even)

 if(enter) begin

 if (~(usrrow[0] ^ usrcol[0]))

 nextstate <= CHKMOVE;

 else

 nextstate <= ERR;

 end

 else

 nextstate<=RDDEST;

 end

 else nextstate<= ERR;

 CHKMOVE:

 if (b == 0 & r == 0)begin // Checks moving own piece

 case(distance)

 ZERODIST: nextstate <= ERR; // some kind of error

 ONEDIST: nextstate <= WRITE; // single space move

 TWODIST: nextstate <= CHKLONG; // jump attempt

 default: nextstate <= ERR;

 endcase

 end

 else nextstate <= ERR;

 CLEARMID:

 nextstate <= WRITE; //erase the piece we're jumping over

 CHKLONG:

 begin

 if(r == turn & b == ~turn) nextstate <= CLEARMID;

 else nextstate <= ERR;

 end

 WRITE: nextstate <= CLEAR;

 CLEAR: nextstate <= DONE;

 DONE: nextstate <= RDSOURCE;

 ERR: begin

 if(enter) nextstate <= RDSOURCE;

 else nextstate <= ERR;

 end

 default: nextstate <= RDSOURCE;

 endcase

 // set up the control signals

 assign {storesrc, storedst, memwrite, adrctrl, turnen, err} = controls;

 getdistandmid check(src, dest, turn, distance, mid);

 // set appropriate control signals

 always_comb

 case(state)

 RDSOURCE: controls <= 7'b1_0_0_00_0_0;

 RDDEST: controls <= 7'b0_1_0_00_0_0;

Korbel, Jimenez 11

 CHKMOVE: controls <= 7'b0_0_0_01_0_0;

 CHKLONG: controls <= 7'b0_0_0_10_0_0;

 WRITE: begin

 controls <= 7'b0_0_1_01_0_0;

 datain <= {~turn,turn};

 end

 CLEAR: begin

 controls <= 7'b0_0_1_00_0_0;

 datain <= 2'b00;

 end

 CLEARMID: begin

 controls <= 7'b0_0_1_10_0_0;

 datain <=2'b00;

 end

 DONE: controls <= 7'b0_0_0_00_1_0;

 ERR: controls <= 7'b0_0_0_00_0_1;

 default: begin

 controls <= 7'bx_x_x_xx_x_x;

 datain <= 2'bxx;

 end

 endcase

 flopenr #(6) srcreg(phi1, phi2 , reset, storesrc, longloc, src);

 flopenr #(6) destreg(phi1, phi2, reset, storedst, longloc, dest);

 // Selects if dest or src will be sent to

 mux_2_1 #(6) selmemmux(dest, src, adrctrl[0], regnum);

 // address for memory gets set

 assign addr = {decinp[5:3], decinp[2:1]};

 // Selects if selmemmux or ctrlloc will be sent to mem

 mux_2_1 #(6) contrmemmux(mid,regnum, adrctrl[1], decinp);

 // keeps track of turn stuff

 flopenr #(1) turnflop(phi1, phi2, reset, turnen, ~turn, turn);

 //stores nextstate logic

 flopenr #(4) nextstateflop(phi1, phi2, fsmreset,1'b1,nextstate, state);

endmodule

module getdistandmid (input logic [5:0] src, dest,// dont forget, these go (row, col)

 input turn, // dont forget, turn is 0 for red, 1 for black

 output logic [1:0] distance,

 output logic [5:0] mid);

 logic [5:0] longdist;

 always_comb begin

 //if row or col didnt change

 //if row or col changed more than 2

 //if row didnt change exactly as much as col

 if(src[2:0] == dest[2:0] | src[5:3] == dest[5:3]|

 longdist[2:0] > 2'b10 | longdist[5:3] > 2'b10 |

 ~(longdist[2:0] == longdist[5:3]))

 distance <= 0; //if row didnt change exactly as much as col

 else distance <= longdist[5:3];

 if(src[2:0] < dest[2:0]) begin // if src col < dest col (OK for either)

 mid[2:0] = src[2:0] + 1;

 longdist[2:0] <= dest[2:0] - src[2:0];

 end

Korbel, Jimenez 12

 else if(turn) begin // if src col > dest col (OK for either)

 mid[2:0] = src[2:0] - 1;

 longdist[2:0] <= src[2:0] - dest[2:0];

 end

 if(src[5:3]<dest[5:3] & ~turn) begin// if src row < dest row (OK for red)

 mid[5:3] = src[5:3] + 1;

 longdist[5:3] <= dest[5:3] - src[5:3];

 end

 else if(turn) begin // if src row > dest row (OK for black)

 mid[5:3] = src[5:3] - 1;

 longdist[5:3] <= src[5:3] - dest[5:3];

 end

 else longdist[5:3] <= 0; // this will cause distance = 0, aka an error

 end

endmodule

module latch #(parameter WIDTH = 8)

 (input logic ph,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 always_latch

 if (ph) q <= d;

endmodule

module flopenr #(parameter WIDTH = 8)

 (input logic ph1, ph2, reset, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 logic [WIDTH-1:0] d2, resetval;

 assign resetval = 0;

 mux3 #(WIDTH) enrmux(q, d, resetval, {reset, en}, d2);

 flop #(WIDTH) f(ph1, ph2, d2, q);

endmodule

module flop #(parameter WIDTH = 8)

 (input logic ph1, ph2,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 logic [WIDTH-1:0] mid;

 latch #(WIDTH) master(ph2, d, mid);

 latch #(WIDTH) slave(ph1, mid, q);

endmodule

module flopen #(parameter WIDTH = 8)

 (input logic ph1, ph2, en,

 input logic [WIDTH-1:0] d,

 output logic [WIDTH-1:0] q);

 logic [WIDTH-1:0] d2;

 mux2 #(WIDTH) enmux(q, d, en, d2);

 flop #(WIDTH) f(ph1, ph2, d2, q);

endmodule

Korbel, Jimenez 13

module mux3 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1, d2,

 input logic [1:0] s,

 output logic [WIDTH-1:0] y);

 always_comb

 casez (s)

 2'b00: y = d0;

 2'b01: y = d1;

 2'b1?: y = d2;

 endcase

endmodule

module mux_2_1 #(parameter width=1)

 (input logic [width-1:0] A,

 input logic [width-1:0] B,

 input logic ctrl,

 output logic [width-1:0] out);

 always_comb

 if (ctrl) out <= A;

 else out <= B;

endmodule

module mux2 #(parameter WIDTH = 8)

 (input logic [WIDTH-1:0] d0, d1,

 input logic s,

 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;

endmodule

Korbel, Jimenez 14

Appendix 2: Self-checking Testbench for the chip
//--

// chip.template

// Max Korbel and Ian Jimenez

// April 18, 2011

// VLSI Final Project: Simplified Checkers

// Testbench for the chip

//--

`timescale 1ns / 100ps

module test;

// 9 bits of input

logic [2:0] usrrow,usrcol;

logic reset, enter, clr;

logic phi1,phi2;

// 3 bits of output that matter

reg [7:0] rowcontrol;

reg blacktind, redtind, err;

chip game (blacktind, err, redtind, clr, enter, phi1, phi2, reset,

 usrcol, usrrow);

 logic [11:0] vectors[200:0], currentvec;

 logic [12:0] vectornum, errors;

 // read test vector file and initialize test

 initial begin

 $readmemb("checkers.tv", vectors);

 vectornum = 0; errors = 0;

 end

 // generate a clock to sequence tests

 always begin

 phi1 = 0; phi2 = 0; #5;

 phi1 = 1; phi2 = 0; #5;

 phi1 = 0; phi2 = 0; #5;

 phi1 = 0; phi2 = 1; #5;

 end

 // apply test

 always @(posedge phi1) begin

 currentvec = vectors[vectornum];

 usrrow = currentvec[8:6];

 usrcol = currentvec[5:3];

 enter = currentvec [2] ;

 clr = currentvec [1] ;

 reset = currentvec [0] ;

 if (currentvec[0] === 1'bx) begin

 $display("Test completed with %d errors", errors);

 $stop;

 end

 end

Korbel, Jimenez 15

 // check if test was sucessful and apply next one

 always @(negedge phi1) begin

 if (err !== currentvec[11] | blacktind !== currentvec[9] |

 redtind !==currentvec[10]) begin

 errors = errors + 1;

 $display("Error: Vectornum =%d ", vectornum);

 $display(" output mismatches at err: %b,turn: %b (%b, %b expected)",

 err, {redtind, blacktind},currentvec[11], currentvec[10:9]);

 end

 vectornum = vectornum + 1;

 end

endmodule

Korbel, Jimenez 16

Appendix 3: Test vectors (arranged in 4 columns)

x_xx_xxx_xxx_0_0_1

0_10_010_000_1_0_0

0_10_xxx_xxx_0_0_0

0_10_011_001_1_0_0

0_10_xxx_xxx_1_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_101_011_1_0_0

0_01_100_010_1_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_010_110_1_0_0

0_10_011_101_1_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_100_010_1_0_0

0_01_010_000_1_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_011_101_1_0_0

0_10_010_110_1_0_0

0_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_1_0_0

0_10_xxx_xxx_0_0_0

0_10_011_101_1_0_0

0_10_xxx_xxx_0_1_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_1

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_000_110_1_0_0

0_10_001_101_1_0_0

0_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_1_0_0

0_10_xxx_xxx_0_0_0

0_10_001_101_1_0_0

0_10_011_111_1_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

1_10_xxx_xxx_1_0_0

0_10_xxx_xxx_0_0_0

0_10_010_100_1_0_0

0_10_011_101_1_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_101_001_1_0_0

0_01_010_100_1_0_0

0_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_0_0

0_01_101_101_1_0_0

0_01_100_100_1_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_010_000_1_0_0

0_10_011_001_1_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_100_100_1_0_0

0_01_011_101_1_0_0

0_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_0_0

0_01_100_100_1_0_0

0_01_010_100_1_0_0

0_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_1_0

0_01_111_111_1_0_0

0_01_100_000_1_0_0

0_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_1_0

0_01_101_010_1_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_1_0

0_01_101_011_1_0_0

0_01_101_010_1_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_1_0

0_01_100_100_1_0_0

0_01_101_101_1_0_0

0_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_0_0_0

1_01_xxx_xxx_1_0_0

0_01_xxx_xxx_0_0_0

0_01_110_110_1_0_0

0_01_101_101_1_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_01_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_xxx_xxx_0_0_0

0_10_111_001_1_0_0

0_10_xxx_xxx_0_0_0

1_10_xxx_xxx_0_0_0

Korbel, Jimenez 17

Appendix 4: Schematics

Schematic for regram

Korbel, Jimenez 18

Schematic for regram_4

Korbel, Jimenez 19

Schematic for regram_zipper_set_4

Schematic for regram_zipper_reset_4

Korbel, Jimenez 20

Schematic for regram_vector_set_4

Schematic for regram_vector_reset_4

Schematic for select_buf

Korbel, Jimenez 21

Schematic for mux_8

Korbel, Jimenez 22

Schematic for regram_decode

Korbel, Jimenez 23

Schematic for regram_array_black

Korbel, Jimenez 24

Schematic for regram_array_red

Korbel, Jimenez 25

Schematic for mem

Korbel, Jimenez 26

Appendix 5: Layouts

Layout for and2_1x (custom, moved pins)

Korbel, Jimenez 27

Layout for regram

Korbel, Jimenez 28

Layout for regram_4

Korbel, Jimenez 29

Layout for regram_decode

Layout for mux_8

Layout for select_buf

Korbel, Jimenez 30

Layout for regram_zipper_reset_4

Korbel, Jimenez 31

Layout for regram_zipper_set_4

Korbel, Jimenez 32

Layout for regram_vector_reset

Layout for regram_vector_set

Korbel, Jimenez 33

Layout for regram_array_black

Korbel, Jimenez 34

Layout for regram_array_red

Korbel, Jimenez 35

Layout for mem

Korbel, Jimenez 36

Layout for chip

