
Introduction to CMOS VLSI Design (E158)H
arris

Project 1

The goal of this project is to design a 9-bit adder with the lowest energy × delay product.

Block Specification

Function: module adder(input clk,
 input [8:0] a, b,

 output [8:0] y);

 assign y = a + b;
endmodule

Inputs: each driven by two buf_1x cells from muddlib, changing concurrently with clk
Outputs: each must drive an inv_4x cell from muddlib
Objective: minimize the power × delay product of the adder (including the power

drawn from VDD by the input buf_1x cells and the power consumed by the
inv_4x output loads)

Simulation Environment

Simulate the chip using the AMI 0.5 µm process with λ = 0.3 µm. Assume an on-chip
temperature of 70 ◦C. You may choose one or more DC supply voltages between 1.2 and
5 V. You may also choose the clock period.

Several files are included in /courses/e158/16/proj1 to help

 adder_ripple: library containing a 9-bit ripple carry adder
 addertest.v: Verilog test bench
 adder.tv: limited set of testvectors for Verilog testbench
 testbench.sp: HSPICE test bench with code to measure delay and energy
 tc.sp desired cycle time (isolated from testbench for ease of changing)
 stim.vec: digital vector file with limited set of testvectors for SPICE testbench
 cycletime.pl: a Perl script to repeatedly run HSPICE to find the minimum delay

Read through each of these files so you understand how they work. It is recommended
that you work from adder_ripple and replace the ripple carry adder with something better.
You are free to use cells from muddlib or to invent new cells.

Run your Verilog simulation in the same way that you did in Lab 4, using addertest.sv as
the testbench.

HSPICE Simulation

HSPICE simulation involves generating a netlist from your schematic, modifying the
testbench to point to your schematic, setting your target cycle time, setting your vectors,
and running the simulator. You may optionally use a Perl script to automatically
determine the minimum cycle time at which the circuit operates correctly on the vectors
provided.

Create a new directory for your simulation (e.g. ~/proj1). Copy all the SPICE-related
files from the course proj1 directory.

The first step is to generate a netlist of your schematic. A good plan is to start with the
adder_ripple schematic provided so that you can test that everything works. In the
schematic editor, choose Tools • Analog Environment. An Analog Design Environment
window will open. Choose Setup • Simulator. Set the simulator to HSPICE (not
hspiceD). Choose a project directory for the netlist; ~/cadence/simulation is fine. Then
choose Simulation • Netlist • Recreate. Look at the netlist in the window that opens and
check that it looks reasonable.

Next, go into the simulation directory. Read through testbench.sp and see how it works.
Check that it points to the correct directory where your netlist was created. Look at
stim.vec and see the default vectors. The first cycle is potentially for reset and is not used.
The expected output is checked one cycle after the inputs are applied. XXX indicates
don’t care for an output. Edit tc.sp and change the cycle time to something conservative,
such as 20 ns.

Run the simulation by typing

hspice testbench.sp > testbench.lis

The results will appear in the .lis file. The measurement results are also summarized in
the .mt0 file. The simulation waveforms are in the .tr0 file where you can inspect them
with Spice Explorer (sx). The .err file indicates whether there were any discrepancies
with the expected outputs in the .vec file. If the file is empty, there were no errors.

Shorten tc.sp and rerun the simulation. Check if there are any errors in testbench.err.
Repeat this process until you find the minimum cycle time at which the ripple carry adder
works. Check the measured energy and compute the energy-delay product.

Modify the stim.vec file to include your actual test vectors. Check that the ripple carry
adder still works (at a sufficiently slow cycle time) to verify that your vectors are correct.

The repeated simulations to find the cycle time get tedious. In the project directory, you
can find a short Perl script called cycletime.pl that repeatedly runs the design at different
cycle times, looking for errors. It reports the minimum cycle time and the EDP. Invoke
it by running

./cycletime.pl

Now, netlist your improved adder design. Find its EDP. Tune your schematic and try to
improve the results. Manual simulations again are tedious, so you may find that using
SPICE’s SWEEP capabilities or enhancing cycletime.pl to automatically tune other
variables is preferable.

Deliverables

There are two deliverables and a design review in this project.

Milestone A: Schematics

Turn in a legible schematic of your adder. If you use any cells that are not part of
muddlib, turn in schematics for those cells as well.

The testvectors provided are woefully inadequate to convince a skeptical engineer that
the RTL is correct. Write a testplan outlining a more comprehensive set of vectors
sufficient to demonstrate that the adder is likely to work, and turn in your new adder.tv
along with the testplan.

Report whether the transistor-level netlist simulates in the addertest testbench for your
new set of vectors with no errors.

Milestone B: Adder Optimization

Try to make your adder have the best possible energy × delay product. You are free to
modify your schematics if you wish to improve a design; if so, turn in the modified
designs.

Turn in SPICE simulations demonstrating the maximum operating frequency of your
design, the energy at that frequency, and the energy × delay product. Use the SPICE
testbench. Be careful that you choose your frequency conservatively enough that the
adder will work correctly on any set of test vectors. You may wish to add test vectors to
boost your confidence. Be sure to change the SIMCYCLES parameter to match.

On the last day of the project, you will be given a new mystery set of test
vectors. Once you have viewed these vectors, you may make no further changes to your
design (including voltage or frequency). Rerun your simulations on the new vectors
without changing anything. Does your design work correctly? What is its energy and
energy × delay product on the new vectors?

Design Review

The adder design review will be held in class.

Complete PowerPoint slides for your adder in a template to be distributed, and email your
slide to the instructor by 8 am on the day of the review. The slides will include a block
diagram explaining your architecture, a Cadence schematic, and the results: supply
voltage(s), energy (pJ), power (mW), operating frequency (GHz), and energy × delay
product (pJ-ns, on the original and second set of test vectors).

In class, we will group the adders by their architecture and evaluate which ones look best.
You should be prepared to field questions about your design. We will take a critical look
at the most promising designs. This may involve opening the schematic and/or
simulation in Cadence during class. Come ready to ask probing questions about the
designs that may highlight implausible assumptions or erroneous results.

One caveat is that wire capacitance is not considered in this design project, making the
results somewhat optimistic.

Grading

Your grade will be based on the following factors:

30%: Readable schematics simulating on schedule
5%: Convincing test vectors
30%: Claimed energy × delay product (relative to other designs in class)
20%: Adder functions at claimed delay on mystery test vectors
10%: Design review slides with readable block diagram, schematic and all data
5%: Contributions to design reviews

Hints

The SWEEP function in SPICE lets you change parameters (such as transistor sizes or
supply voltages) and produce results for each parameter value. This is helpful for tuning.

There are several sections that you could read in the textbook to shave hours of
experimentation off of your project. The project has been intentionally scheduled before
all of these sections are reached in the book, to give you incentive to selectively read
ahead and practice just-in-time learning. An ounce of analysis is worth a sleepless night
of sweeps.

