Lecture 8: SPICE Simulation
Outline

- Introduction to SPICE
- DC Analysis
- Transient Analysis
- Subcircuits
- Optimization
- Power Measurement
- Logical Effort Characterization
Introduction to SPICE

- **Simulation Program with Integrated Circuit Emphasis**
 - Developed in 1970’s at Berkeley
 - Many commercial versions are available
 - HSPICE is a robust industry standard
 - Has many enhancements that we will use
- Written in FORTRAN for punch-card machines
 - Circuits elements are called *cards*
 - Complete description is called a SPICE *deck*
Writing Spice Decks

- Writing a SPICE deck is like writing a good program
 - Plan: sketch schematic on paper or in editor
 - Modify existing decks whenever possible
 - Code: strive for clarity
 - Start with name, email, date, purpose
 - Generously comment
 - Test:
 - Predict what results should be
 - Compare with actual
 - Garbage In, Garbage Out!
Example: RC Circuit

* rc.sp
* David_Harris@hmc.edu 2/2/03
* Find the response of RC circuit to rising input

* Parameters and models
*---
.option post
*---

* Simulation netlist
*---
Vin in gnd pw1 0ps 0 100ps 0 150ps 1.0 1ns 1.0
R1 in out 2k
C1 out gnd 100f

* Stimulus
*---
.tran 20ps 1ns
.plot v(in) v(out)
.end

R1 = 2KΩ
R1 = 2KΩ

C1 = 100fF
C1 = 100fF

Vin
Vin

Vout
Vout

8: SPICE Simulation CMOS VLSI Design 4th Ed.
Result (Graphical)
Sources

- **DC Source**

 \[
 \text{Vdd vdd gnd 2.5}
 \]

- **Piecewise Linear Source**

 \[
 \text{Vin in gnd pw1 0ps 0 100ps 0 150ps 1.0 1ns 1.0}
 \]

- **Pulsed Source**

 \[
 \text{Vck clk gnd PULSE 0 1.0 0ps 100ps 100ps 300ps 800ps}
 \]

\[
\text{PULSE v1 v2 td tr tf pw per}
\]
SPICE Elements

<table>
<thead>
<tr>
<th>Letter</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Resistor</td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>L</td>
<td>Inductor</td>
</tr>
<tr>
<td>K</td>
<td>Mutual Inductor</td>
</tr>
<tr>
<td>V</td>
<td>Independent voltage source</td>
</tr>
<tr>
<td>I</td>
<td>Independent current source</td>
</tr>
<tr>
<td>M</td>
<td>MOSFET</td>
</tr>
<tr>
<td>D</td>
<td>Diode</td>
</tr>
<tr>
<td>Q</td>
<td>Bipolar transistor</td>
</tr>
<tr>
<td>W</td>
<td>Lossy transmission line</td>
</tr>
<tr>
<td>X</td>
<td>Subcircuit</td>
</tr>
<tr>
<td>E</td>
<td>Voltage-controlled voltage source</td>
</tr>
<tr>
<td>G</td>
<td>Voltage-controlled current source</td>
</tr>
<tr>
<td>H</td>
<td>Current-controlled voltage source</td>
</tr>
<tr>
<td>F</td>
<td>Current-controlled current source</td>
</tr>
</tbody>
</table>
Units

<table>
<thead>
<tr>
<th>Letter</th>
<th>Unit</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>atto</td>
<td>10^{-18}</td>
</tr>
<tr>
<td>f</td>
<td>fempto</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>u</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^{3}</td>
</tr>
<tr>
<td>x</td>
<td>mega</td>
<td>10^{6}</td>
</tr>
<tr>
<td>g</td>
<td>giga</td>
<td>10^{9}</td>
</tr>
</tbody>
</table>

Ex: 100 femtofarad capacitor = 100fF, 100f, 100e-15
DC Analysis

* mosiv.sp

*---
* Parameters and models
*---
.include '../models/ibm065/models.sp'
.temp 70
.option post

*---
* Simulation netlist
*---
*nmos
Vgs g gnd 0
Vds d gnd 0
M1 d g gnd gnd NMOS W=100n L=50n

*---
* Stimulus
*---
.dc Vds 0 1.0 0.05 SWEEP Vgs 0 1.0 0.2
.end
I-V Characteristics

- nMOS I-V
 - V_{gs} dependence
 - Saturation

![Graph showing I-V characteristics of nMOS with different V_{gs} values]
MOSFET Elements

M element for MOSFET

Mname drain gate source body type
+ W=<width> L=<length>
+ AS=<area source> AD = <area drain>
+ PS=<perimeter source> PD=<perimeter drain>
* inv.sp

* Parameters and models
*---
.param SUPPLY=1.0
.option scale=25n
.include './models/ibm065/models.sp'
.temp 70
.option post

* Simulation netlist
*---
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 50ps 0ps 0ps 100ps 200ps
M1 y a gnd gnd NMOS W=4 L=2
+ AS=20 PS=18 AD=20 PD=18
M2 y a vdd vdd PMOS W=8 L=2
+ AS=40 PS=26 AD=40 PD=26

* Stimulus
*---
.tran 0.1ps 80ps
.end
Transient Results

- Unloaded inverter
 - Overshoot
 - Very fast edges

![Graph showing transient results with key parameters]

- $t_f = 2.5 \text{ ps}$
- $t_{pdf} = 3.1 \text{ ps}$
- $t_{pdr} = 3.6 \text{ ps}$
- $t_r = 3.5 \text{ ps}$
Subcircuits

- Declare common elements as subcircuits

```
.subckt inv a y N=4 P=8
M1 y a gnd gnd NMOS W='N' L=2
  + AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'
M2 y a vdd vdd PMOS W='P' L=2
  + AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'
.ends
```

- Ex: Fanout-of-4 Inverter Delay
 - Reuse inv
 - Shaping
 - Loading

![Diagram of the circuit with nodes X1 to X5 and load resistors 1, 4, 16, 64, 256, 512, 128, and 32, with a shape input and device under test.]
FO4 Inverter Delay

* fo4.sp

* Parameters and models

.PARAM SUPPLY=1.0
.PARAM H=4
.OPTION SCALE=25n
.INCLUDE '../models/ibm065/models.sp'
.TEMP 70
.OPTION POST

* Subcircuits

.GLOBAL VDD GND
.INCLUDE '../lib/inv.sp'

* Simulation netlist

VDD VDD GND 'SUPPLY'
VIN A GND PULSE 0 'SUPPLY' 0PS 20PS 10PS 20PS 120PS 280PS
X1 A B INV * shape input waveform
X2 B C INV M='H' * reshape input waveform
FO4 Inverter Delay Cont.

X3 c d inv M='H**2' * device under test
X4 d e inv M='H**3' * load
x5 e f inv M='H**4' * load on load

* Stimulus

.tran 0.1ps 280ps
.measure tpdr
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2'
.measure trise
+ TRIG v(d) VAL='0.2*SUPPLY' RISE=1
+ TARG v(d) VAL='0.8*SUPPLY' RISE=1
.measure tfall
+ TRIG v(d) VAL='0.8*SUPPLY' FALL=1
+ TARG v(d) VAL='0.2*SUPPLY' FALL=1
.end
FO4 Results

\[V(t) \] vs. \[t \] graph showing waveforms labeled a through f with timing parameters: \[t_{pdf} = 16 \text{ ps} \] and \[t_{pdr} = 18 \text{ ps} \].
Optimization

- HSPICE can automatically adjust parameters
 - Seek value that optimizes some measurement
- Example: Best P/N ratio
 - We’ve assumed 2:1 gives equal rise/fall delays
 - But we see rise is actually slower than fall
 - What P/N ratio gives equal delays?
- Strategies
 - (1) run a bunch of sims with different P size
 - (2) let HSPICE optimizer do it for us
P/N Optimization

* fo4opt.sp

* Parameters and models

.PARAM SUPPLY=1.0
.OPTION SCALE=25n
.INCLUDE '/models/ibm065/models.sp'
.TEMP 70
.OPTION POST

* Subcircuits

.GLOBAL VDD GND
.INCLUDE '/lib/inv.sp'

* Simulation netlist

<table>
<thead>
<tr>
<th>Vdd</th>
<th>vdd</th>
<th>gnd</th>
<th>'SUPPLY'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>a</td>
<td>gnd</td>
<td>PULSE</td>
</tr>
<tr>
<td>X1</td>
<td>a</td>
<td>b</td>
<td>inv</td>
</tr>
<tr>
<td>X2</td>
<td>b</td>
<td>c</td>
<td>inv</td>
</tr>
<tr>
<td>X3</td>
<td>c</td>
<td>d</td>
<td>inv</td>
</tr>
</tbody>
</table>
P/N Optimization

X4 d e inv P='P1' M=64 * load
X5 e f inv P='P1' M=256 * load on load

* Optimization setup
*--
.param P1=optrange(8,4,16) * search from 4 to 16, guess 8
.model optmod opt itropt=30 * maximum of 30 iterations
.measure bestratio param='P1/4' * compute best P/N ratio

* Stimulus
*--
.tran 0.1ps 280ps SWEEP OPTIMIZE=optrange RESULTS=diff MODEL=optmod
.measure tpdr * rising propagation delay
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf * falling propagation delay
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2' goal=0 * average prop delay
.measure diff param='tpdr-tpdf' goal = 0 * diff between delays
.end
P/N Results

- P/N ratio for equal delay is 2.9:1
 - $t_{pd} = t_{pdr} = t_{pdf} = 17.9$ ps (slower than 2:1 ratio)
 - Big pMOS transistors waste power too
 - Seldom design for exactly equal delays
- What ratio gives lowest average delay?

```plaintext
.tran 1ps 1000ps SWEEP OPTIMIZE=optrange RESULTS=tpd MODEL=optmod
```

- P/N ratio of 1.8:1
 - $t_{pdr} = 18.8$ ps, $t_{pdf} = 15.2$ ps, $t_{pd} = 17.0$ ps
- P/N ratios of 1.5:1 – 2.2:1 gives $t_{pd} < 17.2$ ps
Power Measurement

- HSPICE can measure power
 - Instantaneous $P(t)$
 - Or average P over some interval

```plaintext
.print P(vdd)
.measure pwr AVG P(vdd) FROM=0ns TO=10ns
```

- Power in single gate
 - Connect to separate V_{DD} supply
 - Be careful about input power
Logical Effort

- Logical effort can be measured from simulation
 - As with FO4 inverter, shape input, load output

![Logical Effort Diagram]

- Shape input
- Device Under Test
- Load
- Load on Load

X1
- M=1
- M=h

X2
- M=h

X3
- M=h^2

X4
- M=h^3

X5
- M=h^4

a
b
M=1
M=h
M=h
M=h^3
M=h^4
Logical Effort Plots

- Plot t_{pd} vs. h
 - Normalize by τ
 - y-intercept is parasitic delay
 - Slope is logical effort
- Delay fits straight line very well in any process as long as input slope is consistent
Logical Effort Data

For NAND gates in IBM 65 nm process:

<table>
<thead>
<tr>
<th># of inputs</th>
<th>Input</th>
<th>Rising Logical Effort g_u</th>
<th>Falling Logical Effort g_d</th>
<th>Average Logical Effort g</th>
<th>Rising Parasitic Delay p_u</th>
<th>Falling Parasitic Delay p_d</th>
<th>Average Parasitic Delay p</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1.40</td>
<td>1.12</td>
<td>1.26</td>
<td>2.46</td>
<td>2.48</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.31</td>
<td>1.16</td>
<td>1.24</td>
<td>1.97</td>
<td>1.82</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.59</td>
<td>1.38</td>
<td>1.48</td>
<td>3.05</td>
<td>2.43</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1.90</td>
<td>1.59</td>
<td>1.75</td>
<td>4.04</td>
<td>2.93</td>
<td>3.49</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2.15</td>
<td>1.42</td>
<td>1.78</td>
<td>7.63</td>
<td>5.94</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.09</td>
<td>1.48</td>
<td>1.78</td>
<td>6.67</td>
<td>5.37</td>
<td>6.02</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2.08</td>
<td>1.53</td>
<td>1.80</td>
<td>5.32</td>
<td>4.51</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1.90</td>
<td>1.59</td>
<td>1.75</td>
<td>4.04</td>
<td>2.93</td>
<td>3.49</td>
</tr>
</tbody>
</table>

Notes:

- Parasitic delay is greater for outer input
- Average logical effort is better than estimated
Comparison

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Orbit</th>
<th>HP</th>
<th>AMI</th>
<th>AMI</th>
<th>TSMC</th>
<th>TSMC</th>
<th>TSMC</th>
<th>IBM</th>
<th>IBM</th>
<th>IBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>MOSIS</td>
<td>MOSIS</td>
<td>MOSIS</td>
<td>MOSIS</td>
<td>MOSIS</td>
<td>MOSIS</td>
<td>MOSIS</td>
<td>IBM</td>
<td>IBM</td>
<td>IBM</td>
</tr>
<tr>
<td>Feature Size f</td>
<td>nm</td>
<td>2000</td>
<td>800</td>
<td>600</td>
<td>600</td>
<td>350</td>
<td>250</td>
<td>180</td>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>V</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3.3</td>
<td>3.3</td>
<td>2.5</td>
<td>1.8</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>FO4 Delay</td>
<td>ps</td>
<td>856</td>
<td>297</td>
<td>230</td>
<td>312</td>
<td>210</td>
<td>153</td>
<td>75.6</td>
<td>46.0</td>
<td>37.3</td>
</tr>
<tr>
<td>τ</td>
<td>ps</td>
<td>170</td>
<td>59</td>
<td>45</td>
<td>60</td>
<td>40</td>
<td>30</td>
<td>15</td>
<td>9.0</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Logical Effort

Inverter	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
NAND2	1.13	1.07	1.05	1.08	1.12	1.12	1.14	1.16	1.20	1.26
NAND3	1.32	1.21	1.19	1.24	1.29	1.29	1.31	1.35	1.41	1.51
NAND4	1.53	1.37	1.36	1.42	1.47	1.47	1.50	1.55	1.62	1.78
NOR2	1.57	1.59	1.58	1.60	1.52	1.50	1.57	1.56	1.56	1.50
NOR3	2.16	2.23	2.23	2.30	2.07	2.02	2.00	2.12	2.08	1.96
NOR4	2.76	2.92	2.96	3.09	2.62	2.52	2.53	2.70	2.60	2.43

Parasitic Delay

Inverter	1.08	1.05	1.18	1.25	1.33	1.18	1.03	1.16	1.07	1.20
NAND2	1.87	1.85	1.92	2.10	2.28	2.07	1.90	2.29	2.25	2.47
NAND3	3.34	3.30	3.40	3.79	4.15	3.65	3.51	4.14	4.10	4.44
NAND4	4.98	5.12	5.22	5.78	6.30	5.47	5.52	6.39	6.39	6.79
NOR2	2.86	2.91	3.29	3.56	3.52	2.95	2.85	3.35	3.01	3.29
NOR3	5.65	6.05	7.02	7.70	6.89	5.61	5.57	6.59	5.76	6.35
NOR4	9.11	10.3	12.4	13.9	11.0	8.76	8.95	10.54	9.11	10.16