Lecture 4: Nonideal Transistor Theory
Outline

- Nonideal Transistor Behavior
 - High Field Effects
 - Mobility Degradation
 - Velocity Saturation
 - Channel Length Modulation
 - Threshold Voltage Effects
 - Body Effect
 - Drain-Induced Barrier Lowering
 - Short Channel Effect
 - Leakage
 - Subthreshold Leakage
 - Gate Leakage
 - Junction Leakage

- Process and Environmental Variations
Ideal Transistor I-V

- Shockley long-channel transistor models

\[
I_{ds} = \begin{cases}
0 & \text{cutoff} \\
\beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right)V_{ds} & V_{gs} < V_t, V_{ds} < V_{dsat} \\
\frac{\beta}{2} (V_{gs} - V_t)^2 & V_{ds} > V_{dsat} \text{ saturation}
\end{cases}
\]
Ideal vs. Simulated nMOS I-V Plot

- 65 nm IBM process, $V_{DD} = 1.0$ V

![Graph showing ideal and simulated nMOS I-V plots]

- Velocity saturation & Mobility degradation: I_{on} lower than ideal model predicts
- Channel length modulation: $I_{on} = 747$ mA @ $V_{gs} = V_{ds} = V_{DD}$
- Saturation current increases with V_{ds}
- Velocity saturation & Mobility degradation: Saturation current increases less than quadratically with V_{gs}

$V_{gs} = 1.0$
$V_{gs} = 0.8$
$V_{gs} = 0.6$
$V_{gs} = 0.4$

I_{on} (µA)
V_{ds}
ON and OFF Current

- $I_{on} = I_{ds} @ V_{gs} = V_{ds} = V_{DD}$
 - Saturation

- $I_{off} = I_{ds} @ V_{gs} = 0, V_{ds} = V_{DD}$
 - Cutoff
Electric Fields Effects

- Vertical electric field: $E_{\text{vert}} = \frac{V_{gs}}{t_{ox}}$
 - Attracts carriers into channel
 - Long channel: Q_{channel} proportional to E_{vert}
- Lateral electric field: $E_{\text{lat}} = \frac{V_{ds}}{L}$
 - Accelerates carriers from drain to source
 - Long channel: $v = \mu E_{\text{lat}}$
Coffee Cart Analogy

- Tired student runs from VLSI lab to coffee cart
- Freshmen are pouring out of the physics lecture hall
- V_{ds} is how long you have been up
 - Your velocity = fatigue \times mobility
- V_{gs} is a wind blowing you against the glass (SiO_2) wall
- At high V_{gs}, you are buffeted against the wall
 - Mobility degradation
- At high V_{ds}, you scatter off freshmen, fall down, get up
 - Velocity saturation
 - Don’t confuse this with the saturation region
Mobility Degradation

- High E_{vert} effectively reduces mobility
 - Collisions with oxide interface

\[
\mu_{\text{eff}-n} = \frac{540 \ \text{cm}^2 / \text{V} \cdot \text{s}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}} \right)^{1.85}}
\]

\[
\mu_{\text{eff}-p} = \frac{185 \ \text{cm}^2 / \text{V} \cdot \text{s}}{1 + \left(\frac{V_{gs} + 1.5V_t}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}} \right)}
\]
Velocity Saturation

- At high E_{lat}, carrier velocity rolls off
 - Carriers scatter off atoms in silicon lattice
 - Velocity reaches v_{sat}
 - Electrons: 10^7 cm/s
 - Holes: 8×10^6 cm/s
 - Better model

\[
v = \begin{cases}
\frac{\mu_{\text{eff}} E}{E_c} & E < E_c \\
1 + \frac{E}{E_c} & E \geq E_c \\
v_{\text{sat}} & \end{cases}
\]

\[
E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}
\]

[Graph showing velocity versus electric field for electrons and holes]
Vel Sat I-V Effects

- Ideal transistor ON current increases with V_{DD}^2
 \[I_{ds} = \mu C_{ox} \frac{W}{L} \left(\frac{V_{gs} - V_t}{2} \right)^2 = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \]

- Velocity-saturated ON current increases with V_{DD}
 \[I_{ds} = C_{ox} W (V_{gs} - V_t) v_{sat} \]

- Real transistors are partially velocity saturated
 - Approximate with α-power law model
 - I_{ds} scales with V_{DD}^α
 - $1 < \alpha < 2$ determined empirically (≈ 1.3 for 65 nm)
\(\alpha\)-Power Model

\[I_{ds} = \begin{cases}
0 & V_{gs} < V_t \\
I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} \\
I_{dsat} & V_{ds} > V_{dsat}
\end{cases} \]

- **cutoff**
- **linear**
- **saturation**

\[I_{dsat} = P_c \frac{\beta}{2} (V_{gs} - V_t)^\alpha \]

\[V_{dsat} = P_v (V_{gs} - V_t)^{\alpha/2} \]

\[V_{gs} = 0.4 \]

\[V_{gs} = 0.6 \]

\[V_{gs} = 0.8 \]

\[V_{gs} = 1.0 \]
Channel Length Modulation

- Reverse-biased p-n junctions form a *depletion region*
 - Region between n and p with no carriers
 - Width of depletion L_d region grows with reverse bias
 - $L_{\text{eff}} = L - L_d$

- Shorter L_{eff} gives _____ current
 - I_{ds} ________ with V_{ds}
 - Even in saturation

Reverse-biased p-n junctions form a *depletion region*. Region between n and p with no carriers. Width of depletion L_d region grows with reverse bias. $L_{\text{eff}} = L - L_d$. Shorter L_{eff} gives _____ current. I_{ds} ________ with V_{ds}, even in saturation.
\[I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 (1 + \lambda V_{ds}) \]

- \(\lambda = \text{channel length modulation coefficient} \)
 - not feature size
 - Empirically fit to I-V characteristics
Threshold Voltage Effects

- V_t is V_{gs} for which the channel starts to invert
- Ideal models assumed V_t is constant
- Really depends (weakly) on almost everything else:
 - Body voltage: *Body Effect*
 - Drain voltage: *Drain-Induced Barrier Lowering*
 - Channel length: *Short Channel Effect*
Body Effect

- Body is a fourth transistor terminal
- V_{sb} affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t
 $$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$
- V_{t0} = nominal threshold voltage
- ϕ_s = surface potential at threshold
 $$\phi_s = 2v_T \ln \frac{N_A}{n_i}$$
 - Depends on doping level N_A
 - And intrinsic carrier concentration n_i
- γ = body effect coefficient
 $$\gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon_{si}N_A} = \frac{\sqrt{2q\varepsilon_{si}N_A}}{C_{ox}}$$
Body Effect Cont.

- For small source-to-body voltage, treat as linear

$$V_t = V_{t0} + k_\gamma V_{sb}$$

$$k_\gamma = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{q\varepsilon_{si} N_A}}{\sqrt{\frac{q\varepsilon_{si} N_A}{\nu_T \ln \frac{N_A}{n_i}}}} = \frac{\nu_T \ln \frac{N_A}{n_i}}{2C_{ox}}$$
DIBL

- Electric field from drain affects channel
- More pronounced in small transistors where the drain is closer to the channel
- Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V'_t = V_t - \eta V_{ds}$$

- High drain voltage causes current to ________
Short Channel Effect

- In small transistors, source/drain depletion regions extend into the channel
 - Impacts the amount of charge required to invert the channel
 - And thus makes V_t a function of channel length
- Short channel effect: V_t increases with L
 - Some processes exhibit a reverse short channel effect in which V_t decreases with L
Leakage

- What about current in cutoff?
- Simulated results
- What differs?

- Current doesn't go to 0 in cutoff
Leakage Sources

- **Subthreshold conduction**
 - Transistors can’t abruptly turn ON or OFF
 - Dominant source in contemporary transistors

- **Gate leakage**
 - Tunneling through ultrathin gate dielectric

- **Junction leakage**
 - Reverse-biased PN junction diode current
Subthreshold Leakage

- Subthreshold leakage exponential with V_{gs}

 $$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{y} V_{sb}}{n v_{T}}} \left(1 - e^{-\frac{-V_{ds}}{v_{T}}}\right)$$

- n is process dependent
 - typically 1.3-1.7
- Rewrite relative to I_{off} on log scale

$$I_{ds} = I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{dd}) - k_{y} V_{sb}}{S} \left(1 - e^{-\frac{-V_{ds}}{v_{T}}}\right)}$$

- $S \approx 100 \text{ mV/decade} @ \text{room temperature}$
Gate Leakage

- Carriers tunnel through very thin gate oxides
- Exponentially sensitive to t_{ox} and V_{DD}

$$I_{gate} = WA \left(\frac{V_{DD}}{t_{ox}} \right)^2 e^{-B \frac{t_{ox}}{V_{DD}}}$$

- A and B are tech constants
- Greater for electrons
 - So nMOS gates leak more

- Negligible for older processes ($t_{ox} > 20 \text{ Å}$)
- Critically important at 65 nm and below ($t_{ox} \approx 10.5 \text{ Å}$)

From [Song01]
Junction Leakage

- Reverse-biased p-n junctions have some leakage
 - Ordinary diode leakage
 - Band-to-band tunneling (BTBT)
 - Gate-induced drain leakage (GIDL)
Diode Leakage

- Reverse-biased p-n junctions have some leakage

\[I_D = I_S \left(\frac{V_D}{e^{v_T} - 1} \right) \]

- At any significant negative diode voltage, \(I_D = -I_s \)
- \(I_s \) depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/\(\mu \)m\(^2\) (negligible)
Band-to-Band Tunneling

- Tunneling across heavily doped p-n junctions
 - Especially sidewall between drain & channel when *halo doping* is used to increase V_t
- Increases junction leakage to significant levels

\[
I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} e^{-B \frac{E_g^{1.5}}{E_j}}
\]

\[
E_j = \sqrt{\frac{2qN_{halo}N_{sd}}{\varepsilon(N_{halo} + N_{sd})}} \left(V_{DD} + v_T \ln \frac{N_{halo}N_{sd}}{n_i^2} \right)
\]

- X_j: sidewall junction depth
- E_g: bandgap voltage
- A, B: tech constants
Gate-Induced Drain Leakage

- Occurs at overlap between gate and drain
 - Most pronounced when drain is at V_{DD}, gate is at a negative voltage
 - Thwarts efforts to reduce subthreshold leakage using a negative gate voltage
Temperature Sensitivity

- Increasing temperature
 - Reduces mobility
 - Reduces V_t
- I_{ON} __________ with temperature
- I_{OFF} __________ with temperature

\[\sqrt{I_{ds}} \]

\[V_{gs} \]
So What?

- So what if transistors are not ideal?
 - They still behave like switches.

- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation
Parameter Variation

- Transistors have uncertainty in parameters
 - Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
 - Vary around typical (T) values

- Fast (F)
 - L_{eff}: ________
 - V_t: ________
 - t_{ox}: ________

- Slow (S): opposite

- Not all parameters are independent for nMOS and pMOS

4: Nonideal Transistor Theory CMOS VLSI Design 4th Ed. 29
Environmental Variation

- V_{DD} and T also vary in time and space
- **Fast:**
 - V_{DD}: ______
 - T: ______

<table>
<thead>
<tr>
<th>Corner</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>1.8</td>
<td>70 C</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.

- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature
Some critical simulation corners include:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>nMOS</th>
<th>pMOS</th>
<th>V_{DD}</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subthreshold leakage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>