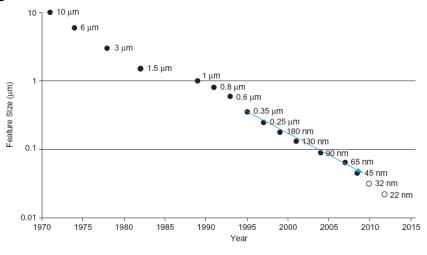


NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 17: Scaling & Economics

Outline

- □ Scaling
 - Transistors
 - Interconnect
 - Future Challenges
- Economics



Why?

- □ Why more transistors per IC?
 - Smaller transistors
 - Larger dice
- □ Why faster computers?
 - Smaller, faster transistors
 - Better microarchitecture (more IPC)
 - Fewer gate delays per cycle

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster and lower power
 - Wires do not improve
 - (and may get worse)
- Scale factor S
 - Typically $S = \sqrt{2}$
 - Technology nodes

CMOS VLSI Design 4th Ed.

Dennard Scaling

- Proposed by Dennard in 1974
- Also known as constant field scaling
 - Electric fields remain the same as features scale
- □ Scaling assumptions
 - All dimensions (x, y, z => W, L, t_{ox})
 - Voltage (V_{DD})
 - Doping levels

Device Scaling

Parameter	Sensitivity	Dennard Scaling
L: Length		1/S
W: Width		1/S
t _{ox} : gate oxide thickness		1/S
V _{DD} : supply voltage		1/S
V _t : threshold voltage		1/S
NA: substrate doping		S
β	W/(Lt _{ox})	S
I _{on} : ON current	$\beta(V_{DD}-V_t)^2$	1/S
R: effective resistance	V _{DD} /I _{on}	1
C: gate capacitance	WL/t _{ox}	1/S
τ: gate delay	RC	1/S
f: clock frequency	1/τ	S
E: switching energy / gate	CV _{DD} ²	1/S ³
P: switching power / gate	Ef	1/S ²
A: area per gate	WL	1/S ²
Switching power density	P/A	1
Switching current density	I _{on} /A	S

15: Scaling and Economics

Observations

- Gate capacitance per micron is nearly independent of process
- But ON resistance * micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)

Example

- Gate capacitance is typically about 1 fF/μm
- The typical FO4 inverter delay for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit (4/2 λ) transistor.

Real Scaling

- \Box t_{ox} scaling has slowed since 65 nm
 - Limited by gate tunneling current
 - Gates are only about 4 atomic layers thick!
 - High-k dielectrics have helped continued scaling of effective oxide thickness
- \Box V_{DD} scaling has slowed since 65 nm
 - SRAM cell stability at low voltage is challenging
- Dennard scaling predicts cost, speed, power all improve
 - Below 65 nm, some designers find they must choose just two of the three

Wire Scaling

- □ Wire cross-section
 - w, s, t all scale
- Wire length
 - Local / scaled interconnect
 - Global interconnect
 - Die size scaled by $D_c \approx 1.1$

Interconnect Scaling

Parameter	Sensitivity	Scale Factor
w: width		1/S
s: spacing		1/S
t: thickness		1/S
h: height		1/S
D _c : die size		D _c
R _w : wire resistance/unit length	1/wt	S ²
C _{wf} : fringing capacitance / unit length	t/s	1
C _{wp} : parallel plate capacitance / unit length	w/h	1
C _w : total wire capacitance / unit length	$C_{wf} + C_{wp}$	1
t _{wu} : unrepeated RC delay / unit length	R _w C _w	S ²
t _{wr} : repeated RC delay / unit length	sqrt(RCR _w C _w)	sqrt(S)
Crosstalk noise	w/h	1
E _w : energy per bit / unit length	$C_w V_{DD}^2$	1/S ²

Interconnect Delay

Parameter	Sensitivity	Local / Semiglobal	Global			
I: length		1/S	D _c			
Unrepeated wire RC delay	l²t _{wu}	1	S ² D _c ²			
Repeated wire delay	lt _{wr}	sqrt(1/S)	D _c sqrt(S)			
Energy per bit	IE _w	1/S ³	D ^c /S ²			

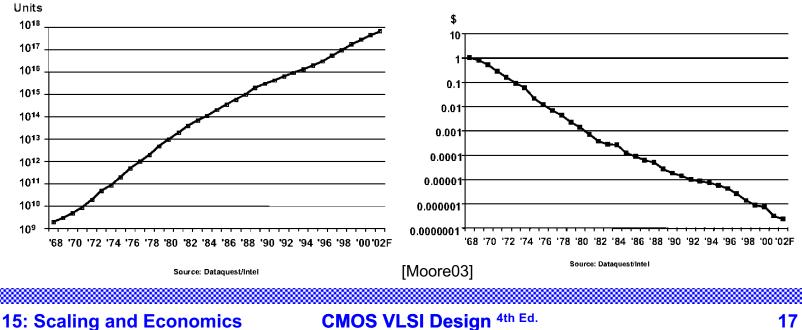
Observations

- □ Capacitance per micron is remaining constant
 - About 0.2 fF/ μ m
 - Roughly 1/5 of gate capacitance
- □ Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- □ Global wires are getting slower
 - No longer possible to cross chip in one cycle

ITRS

Semiconductor Industry Association forecast

- Intl. Technology Roadmap for Semiconductors


Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
$L_{\text{gate}} (\text{nm})$	20	14	10	7	5
$V_{DD}(\mathbf{V})$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

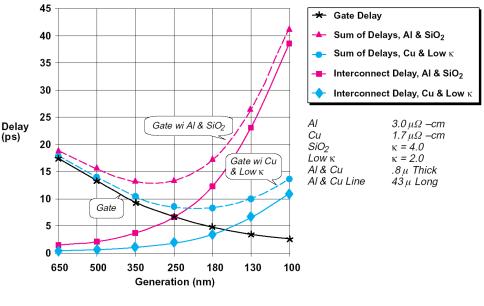
Scaling Implications

- Improved Performance
- Improved Cost
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

Cost Improvement

In 2003, \$0.01 bought you 100,000 transistors - Moore's Law is still going strong

Interconnect Woes

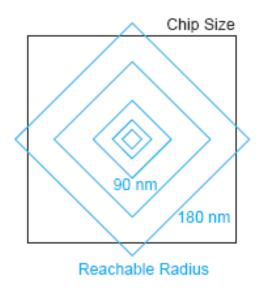

□ SIA made a gloomy forecast in 1997

 Delay would reach minimum at 250 – 180 nm, then get worse because of wires

But...

- Misleading scale
- Global wires

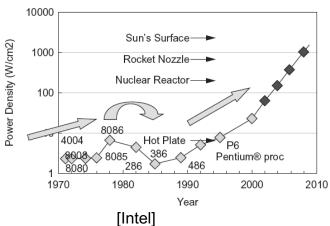
100 kgate blocks ok ^{Dela} (ps)


[SIA97]

15: Scaling and Economics

CMOS VLSI Design 4th Ed.

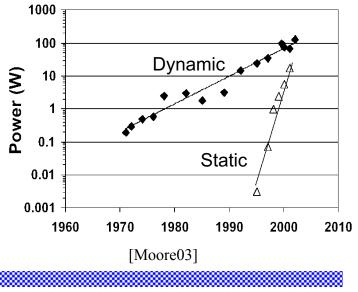
Reachable Radius


- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
 - Just as off-chip memory latencies were tolerated

Dynamic Power

□ Intel VP Patrick Gelsinger (ISSCC 2001)

- If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
- "Business as usual will not work in the future."
- Attention to power is increasing



CMOS VLSI Design 4th Ed.

Static Power

$\square V_{DD} \text{ decreases}$

- Save dynamic power
- Protect thin gate oxides and short channels
- No point in high value because of velocity sat.
- V_t must decrease to
 maintain device performance
- But this causes exponential increase in OFF leakage
- ☐ Major future challenge

CMOS VLSI Design 4th Ed.

Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
 - Bigger design teams
 - Up to 500 for a high-end microprocessor
 - More expensive design cost
 - Pressure to raise productivity
 - Rely on synthesis, IP blocks
 - Need for good engineering managers

Physical Limits

- □ Will Moore's Law run out of steam?
 - Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay
- Rumors of demise have been exaggerated

VLSI Economics

□ Selling price S_{total}

$$-S_{total} = C_{total} / (1-m)$$

- m = profit margin
- $\Box C_{total} = total cost$
 - Nonrecurring engineering cost (NRE)
 - Recurring cost
 - Fixed cost

NRE

□ Engineering cost

- Depends on size of design team
- Include benefits, training, computers
- CAD tools:
 - Digital front end: \$10K
 - Analog front end: \$100K
 - Digital back end: \$1M
- Prototype manufacturing
 - Mask costs: \$5M in 45 nm process
 - Test fixture and package tooling

Recurring Costs

□ Fabrication

- Wafer cost / (Dice per wafer * Yield)
- Wafer cost: \$500 \$3000

- Dice per wafer:
$$N = \pi \left[\frac{r^2}{A} - \frac{2r}{\sqrt{2A}} \right]$$

- Yield:
$$Y = e^{-AD}$$

- For small A, Y ≈ 1, cost proportional to area
- For large A, Y ≈ 0, cost increases exponentially
- Packaging

Test

Fixed Costs

- Data sheets and application notes
- Marketing and advertising
- Yield analysis

Example

- You want to start a company to build a wireless communications chip. How much venture capital must you raise?
- Because you are smarter than everyone else, you can get away with a small team in just two years:
 - Seven digital designers
 - Three analog designers
 - Five support personnel

Solution

- Digital designers:
 - \$70k salary
 - \$30k overhead
 - \$10k computer
 - \$10k CAD tools
 - Total: \$120k * 7 = \$840k
- Analog designers
 - \$100k salary
 - \$30k overhead
 - \$10k computer
 - \$100k CAD tools
 - Total: \$240k * 3 = \$720k

- Support staff
 - \$45k salary
 - \$20k overhead
 - \$5k computer
 - Total: \$70k * 5 = \$350k
- Fabrication
 - Back-end tools: \$1M
 - Masks: \$5M
 - Total: \$6M / year
- Summary
 - 2 years @ \$7.91M / year
 - \$16M design & prototype