Outline

- Variation
- Noise Budgets
- Reliability
- Circuit Pitfalls
Variation

- Process
 - Threshold
 - Channel length
 - Interconnect dimensions
- Environment
 - Voltage
 - Temperature
- Aging / Wearout
Process Variation

- Threshold Voltage
 - Depends on placement of dopants in channel
 - Standard deviation inversely proportional to channel area
 \[\sigma_{V_t} = \frac{t_{ox}}{e_{ox}} \sqrt{\frac{q^3 \epsilon_{ox} \phi_p N_d}{\sqrt{2LW}}} = \frac{A_{V_t}}{\sqrt{LW}} \]

- Channel Length
 - Systematic across-chip linewidth variation (ACLV)
 - Random line edge roughness (LER)

- Interconnect
 - Etching variations affect \(w, s, h \)

Courtesy Texas Instruments

[Bernstein06]

[Bernstein06]
Spatial Distribution

- Variations show spatial correlation
 - Lot-to-lot (L2L)
 - Wafer-to-wafer (W2W)
 - Die-to-die (D2D) / inter-die
 - Within-die (WID) / intradie
- Closer transistors match better

Courtesy M. Pelgrom
Environmental Variation

- **Voltage**
 - V_{DD} is usually designed +/- 10%
 - Regulator error
 - On-chip droop from switching activity

- **Temperature**
 - Ambient temperature ranges
 - On-die temperature elevated by chip power consumption

<table>
<thead>
<tr>
<th>Standard</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>0 °C</td>
<td>70 °C</td>
</tr>
<tr>
<td>Industrial</td>
<td>-40 °C</td>
<td>85 °C</td>
</tr>
<tr>
<td>Military</td>
<td>-55 °C</td>
<td>125 °C</td>
</tr>
</tbody>
</table>

[Courtesy IBM][Harris01b]
Aging

- Transistors change over time as they wear out
 - Hot carriers
 - Negative bias temperature instability
 - Time-dependent dielectric breakdown
- Causes threshold voltage changes
- More on this later…
Process Corners

- Model extremes of process variations in simulation
- Corners
 - Typical (T)
 - Fast (F)
 - Slow (S)
- Factors
 - nMOS speed
 - pMOS speed
 - Wire
 - Voltage
 - Temperature

<table>
<thead>
<tr>
<th>Corner</th>
<th>Voltage</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1.98</td>
<td>0 °C</td>
</tr>
<tr>
<td>T</td>
<td>1.8</td>
<td>70 °C</td>
</tr>
<tr>
<td>S</td>
<td>1.62</td>
<td>125 °C</td>
</tr>
</tbody>
</table>
Corner Checks

- Circuits are simulated in different corners to verify different performance and correctness specifications

<table>
<thead>
<tr>
<th>Corner</th>
<th>nMOS</th>
<th>pMOS</th>
<th>Wire</th>
<th>V_{DD}</th>
<th>Temp</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Timing specifications (binned parts)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Timing specifications (conservative)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Race conditions, hold time constraints, pulse collapse, noise</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>?</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>Dynamic power</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>S</td>
<td>Subthreshold leakage noise and power, overall noise analysis</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>Races of gates against wires</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>S</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Races of wires against gates</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Pseudo-nMOS and ratioed circuits noise margins, memory read/write, race of pMOS against nMOS</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Ratioed circuits, memory read/write, race of nMOS against pMOS</td>
</tr>
</tbody>
</table>
Monte Carlo Simulation

- As process variation increases, the worst-case corners become too pessimistic for practical design
- Monte Carlo: repeated simulations with parameters randomly varied each time
- Look at scatter plot of results to predict yield
- Ex: impact of V_t variation
 - ON-current
 - leakage
Noise

- Sources
 - Power supply noise / ground bounce
 - Capacitive coupling
 - Charge sharing
 - Leakage
 - Noise feedthrough
- Consequences
 - Increased delay (for noise to settle out)
 - Or incorrect computations
Reliability

- Hard Errors
 - Oxide wearout
 - Interconnect wearout
 - Overvoltage failure
 - Latchup
- Soft Errors
- Characterizing reliability
 - Mean time between failures (MTBF)
 • # of devices \times hours of operation / number of failures
 - Failures in time (FIT)
 • # of failures / thousand hours / million devices
Accelerated Lifetime Testing

- Expected reliability typically exceeds 10 years
- But products come to market in 1-2 years
- Accelerated lifetime testing required to predict adequate long-term reliability

[Graph showing DC Lifetime 10% ion [Hrs] vs. Vdd stress [Volt]]

[Source: Arnaud08]
Hot Carriers

- Electric fields across channel impart high energies to some carriers
 - These “hot” carriers may be blasted into the gate oxide where they become trapped
 - Accumulation of charge in oxide causes shift in V_t over time
 - Eventually V_t shifts too far for devices to operate correctly
- Choose V_{DD} to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with slow input risetime and long propagation delays
NBTI

- Negative bias temperature instability
- Electric field applied across oxide forms dangling bonds called traps at Si-SiO₂ interface
- Accumulation of traps causes V_t shift
- Most pronounced for pMOS transistors with strong negative bias ($V_g = 0, V_s = V_{DD}$) at high temperature

$$\Delta V_t = k e \frac{E_{ox}}{E_0} t^{0.25}$$

$$E_{ox} = V_{DD}/t_{ox}$$
TDDB

- *Time-dependent dielectric breakdown*
 - Gradual increase in gate leakage when an electric field is applied across an oxide
 - a.k.a *stress-induced leakage current*
- For 10-year life at 125 C, keep E_{ox} below ~ 0.7 V/nm
Electromigration

- "Electron wind" causes movement of metal atoms along wires
- Excessive electromigration leads to open circuits
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature
 - Black’s Equation: $MTTF \propto \frac{e^{\frac{E_a}{kT}}}{J_{dc}^n}$
 - Typical limits: $J_{dc} < 1 – 2$ mA / μm²

[Christiansen06]
Electromigration Video
In-situ Observation of Electromigration via HVSEM

J. Doan, S. Lee J. Bravman, P. Flinn, *T. Marieb

Dept. of Materials Science & Engineering, Stanford University
*Components Research, Intel Corporation - Santa Clara

Aluminum Alloy Study: Alsctnt01
1/19/97

Copyright © 1997 by J. C. Doan
Self-Heating

- Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive, slower
- Self-heating limits AC current densities for reliability

\[
I_{\text{rms}} = \sqrt{\frac{\int_0^T I(t)^2 \, dt}{T}}
\]

- Typical limits: \(J_{\text{rms}} < 15 \text{ mA} / \mu \text{m}^2 \)
Overvoltage Failure

- High voltages can blow out tiny transistors
- Electrostatic discharge (ESD)
 - kilovolts from static electricity when the package pins are handled
- Oxide breakdown
 - In a 65 nm process, $V_g \approx 3$ V causes arcing through thin gate oxides
- Punchthrough
 - High V_{ds} causes depletion region between source and drain to touch, leading to high current flow and destructive overheating
Latchup

- Latchup: positive feedback leading to $V_{DD} - GND$ short
 - Major problem for 1970’s CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps
Guard Rings

- Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- Surround sensitive region with guard ring to collect injected charge
In 1970’s, DRAMs were observed to randomly flip bits
- Ultimately linked to alpha particles and cosmic ray neutrons
Collisions with atoms create electron-hole pairs in substrate
- These carriers are collected on p-n junctions, disturbing the voltage

[Baumann05]
Radiation Hardening

- Radiation hardening reduces soft errors
 - Increase node capacitance to minimize impact of collected charge
 - Or use redundancy
 - E.g. dual-interlocked cell

- Error-correcting codes
 - Correct for soft errors that do occur
Detective puzzle
- Given circuit and symptom, diagnose cause and recommend solution
- All these pitfalls have caused failures in real chips
Bad Circuit 1

- **Circuit**
 - 2:1 multiplexer

- **Symptom**
 - Mux works when selected D is 0 but not 1.
 - Or fails at low V_{DD}.
 - Or fails in SFSF corner.

- **Principle:**
 - X never rises above $V_{DD} - V_t$
 - V_t is raised by the body effect
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}.

- **Solution:**
 - Use transmission gates, not pass transistors
Bad Circuit 2

- Circuit
 - Latch

- Symptom
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Q spontaneously flips to 1

- Principle:
 -
 -

- Solution:
Bad Circuit 3

☐ Circuit
 – Domino AND gate

☐ Symptom
 – Precharge gate (Y=0)
 – Then evaluate
 – Eventually Y spontaneously flips to 1

☐ Principle:
 –
 –

☐ Solution:
Bad Circuit 4

- **Circuit**
 - Pseudo-nMOS OR

- **Symptom**
 - When only one input is true, \(Y = 0 \).
 - Perhaps only happens in SF corner.

- **Principle:**
 -
 -

- **Solution:**
Bad Circuit 5

- **Circuit**
 - Latch

 \[\text{D} \xrightarrow{\phi} \times \xrightarrow{\text{weak}} \text{Q} \]

- **Symptom**
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.

- **Principle:**

- **Solutions:**

- Check relative strengths
- Avoid unbuffered diffusion inputs where driver is unknown
Bad Circuit 6

- **Circuit**
 - Domino AND gate

- **Symptom**
 - Precharge gate while $A = B = 0$, so $Z = 0$
 - Set $\phi = 1$
 - A rises
 - Z is observed to sometimes rise

- **Principle:**
 - Charge Sharing
 - If X was low, it shares charge with Y

- **Solutions:**
 - Limit charge sharing
 - Safe if $C_Y > C_X$
 - Or precharge node X too
Bad Circuit 7

- Circuit
 - Dynamic gate + latch

- Symptom
 - Precharge gate while transmission gate latch is opaque
 - Evaluate
 - When latch becomes transparent, X falls

- Principle:

- Solution:
Bad Circuit 8

- Circuit
 - Latch

- Symptom
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver

- Principle:
 -
 -

- Solution:
Summary

- Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- Essential to check circuits for pitfalls
 - For large chips, you need an automatic checker.
 - Design rules aren’t worth the paper they are printed on unless you back them up with a tool.