Lecture 15: Scaling & Economics
Outline

- Scaling
 - Transistors
 - Interconnect
 - Future Challenges
- Economics
Recall that Moore’s Law has been driving CMOS.
Why?

- Why more transistors per IC?
 - Smaller transistors
 - Larger dice

- Why faster computers?
 - Smaller, faster transistors
 - Better microarchitecture (more IPC)
 - Fewer gate delays per cycle
Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster and lower power
 - Wires do not improve (and may get worse)
- Scale factor S
 - Typically $S = \sqrt{2}$
 - Technology nodes

![Feature Size vs Year Graph]
Dennard Scaling

- Proposed by Dennard in 1974
- Also known as constant field scaling
 - Electric fields remain the same as features scale
- Scaling assumptions
 - All dimensions ($x, y, z => W, L, t_{ox}$)
 - Voltage (V_{DD})
 - Doping levels
Device Scaling

### Parameter	Sensitivity	Dennard Scaling
L: Length | 1/S |
W: Width | 1/S |
t_\text{ox}: gate oxide thickness | 1/S |
V_\text{DD}: supply voltage | 1/S |
V_t: threshold voltage | 1/S |
NA: substrate doping | S |
\(\beta\): | \(W/(Lt_{\text{ox}})\) | S
I_\text{on}: ON current | \(\beta(V_{\text{DD}}-V_t)^2\) | 1/S
R: effective resistance | \(V_{\text{DD}}/I_{\text{on}}\) | 1
C: gate capacitance | \(WL/t_{\text{ox}}\) | 1/S
\(\tau\): gate delay | RC | 1/S
f: clock frequency | \(1/\tau\) | S
E: switching energy / gate | \(CV_{\text{DD}}^2\) | 1/S^3
P: switching power / gate | Ef | 1/S^2
A: area per gate | WL | 1/S^2
Switching power density | P/A | 1
Switching current density | \(I_{\text{on}}/A\) | S
Observations

- Gate capacitance per micron is nearly independent of process
- But ON resistance * micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)
Example

- Gate capacitance is typically about 1 fF/μm
- The typical FO4 inverter delay for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit $(4/2 \lambda)$ transistor.
Real Scaling

- t_{ox} scaling has slowed since 65 nm
 - Limited by gate tunneling current
 - Gates are only about 4 atomic layers thick!
 - High-k dielectrics have helped continued scaling of effective oxide thickness
- V_{DD} scaling has slowed since 65 nm
 - SRAM cell stability at low voltage is challenging
- Dennard scaling predicts cost, speed, power all improve
 - Below 65 nm, some designers find they must choose just two of the three
Wire Scaling

- Wire cross-section
 - w, s, t all scale
- Wire length
 - Local / scaled interconnect
 - Global interconnect
 - Die size scaled by $D_c \approx 1.1$
Interconnect Scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>w: width</td>
<td>1/(S)</td>
<td></td>
</tr>
<tr>
<td>s: spacing</td>
<td>1/(S)</td>
<td></td>
</tr>
<tr>
<td>t: thickness</td>
<td>1/(S)</td>
<td></td>
</tr>
<tr>
<td>h: height</td>
<td>1/(S)</td>
<td></td>
</tr>
<tr>
<td>(D_c): die size</td>
<td>1/(S)</td>
<td>(D_c)</td>
</tr>
<tr>
<td>(R_w): wire resistance/unit length</td>
<td>(1/wt)</td>
<td>(S^2)</td>
</tr>
<tr>
<td>(C_{wf}): fringing capacitance / unit length</td>
<td>(t/s)</td>
<td>1</td>
</tr>
<tr>
<td>(C_{wp}): parallel plate capacitance / unit length</td>
<td>(w/h)</td>
<td>1</td>
</tr>
<tr>
<td>(C_w): total wire capacitance / unit length</td>
<td>(C_{wf} + C_{wp})</td>
<td>1</td>
</tr>
<tr>
<td>(t_{wu}): unpeated RC delay / unit length</td>
<td>(R_w C_w)</td>
<td>(S^2)</td>
</tr>
<tr>
<td>(t_w): repeated RC delay / unit length</td>
<td>(\sqrt{RCR_w C_w})</td>
<td>(\sqrt{S})</td>
</tr>
<tr>
<td>Crosstalk noise</td>
<td>(w/h)</td>
<td>1</td>
</tr>
<tr>
<td>(E_w): energy per bit / unit length</td>
<td>(C_w V_{DD}^2)</td>
<td>(1/S^2)</td>
</tr>
</tbody>
</table>
Interconnect Delay

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity</th>
<th>Local / Semiglobal</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>l: length</td>
<td>1/S</td>
<td></td>
<td>D_c</td>
</tr>
<tr>
<td>Unrepeated wire RC delay</td>
<td>1</td>
<td></td>
<td>S^2 D_c^2</td>
</tr>
<tr>
<td>Repeated wire delay</td>
<td>sqrt(1/S)</td>
<td></td>
<td>D_c sqrt(S)</td>
</tr>
<tr>
<td>Energy per bit</td>
<td>1/S^3</td>
<td></td>
<td>D_c^c/S^2</td>
</tr>
</tbody>
</table>
Observations

- Capacitance per micron is remaining constant
 - About 0.2 fF/μm
 - Roughly 1/5 of gate capacitance
- Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- Global wires are getting slower
 - No longer possible to cross chip in one cycle
Semiconductor Industry Association forecast
 - Intl. Technology Roadmap for Semiconductors

<table>
<thead>
<tr>
<th>Year</th>
<th>2009</th>
<th>2012</th>
<th>2015</th>
<th>2018</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature size (nm)</td>
<td>34</td>
<td>24</td>
<td>17</td>
<td>12</td>
<td>8.4</td>
</tr>
<tr>
<td>L_{gate} (nm)</td>
<td>20</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>V_{DD} (V)</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.65</td>
</tr>
<tr>
<td>Billions of transistors/die</td>
<td>1.5</td>
<td>3.1</td>
<td>6.2</td>
<td>12.4</td>
<td>24.7</td>
</tr>
<tr>
<td>Wiring levels</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Maximum power (W)</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>DRAM capacity (Gb)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Flash capacity (Gb)</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
</tr>
</tbody>
</table>
Scaling Implications

- Improved Performance
- Improved Cost
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits
Cost Improvement

- In 2003, $0.01 bought you 100,000 transistors
 - Moore’s Law is still going strong

Source: Dataquest/Intel

[Moore03]
Interconnect Woes

- SIA made a gloomy forecast in 1997
 - Delay would reach minimum at 250 – 180 nm, then get worse because of wires
- But…
 - Misleading scale
 - Global wires
- 100 kgate blocks ok

[SIA97]
Reachable Radius

- We can’t send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
 - Just as off-chip memory latencies were tolerated
Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - “Business as usual will not work in the future.”

- Attention to power is increasing

![Power Density Graph](image)
Static Power

- V_{DD} decreases
 - Save dynamic power
 - Protect thin gate oxides and short channels
 - No point in high value because of velocity sat.
- V_t must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge
Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
 - Bigger design teams
 - Up to 500 for a high-end microprocessor
 - More expensive design cost
 - Pressure to raise productivity
 - Rely on synthesis, IP blocks
 - Need for good engineering managers
Physical Limits

- Will Moore’s Law run out of steam?
 - Can’t build transistors smaller than an atom…
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay
- Rumors of demise have been exaggerated
VLSI Economics

- Selling price S_{total}

 $$S_{\text{total}} = \frac{C_{\text{total}}}{1-m}$$

- m = profit margin

- C_{total} = total cost

 - Nonrecurring engineering cost (NRE)
 - Recurring cost
 - Fixed cost
NRE

- Engineering cost
 - Depends on size of design team
 - Include benefits, training, computers
 - CAD tools:
 - Digital front end: $10K
 - Analog front end: $100K
 - Digital back end: $1M

- Prototype manufacturing
 - Mask costs: $5M in 45 nm process
 - Test fixture and package tooling
Recurring Costs

- Fabrication
 - Wafer cost / (Dice per wafer * Yield)
 - Wafer cost: $500 - $3000
 - Dice per wafer: $N = \pi \left[\frac{r^2}{A} - \frac{2r}{\sqrt{2A}} \right]$
 - Yield: $Y = e^{-AD}$
 - For small A, $Y \approx 1$, cost proportional to area
 - For large A, $Y \rightarrow 0$, cost increases exponentially

- Packaging
- Test
Fixed Costs

- Data sheets and application notes
- Marketing and advertising
- Yield analysis
Example

- You want to start a company to build a wireless communications chip. How much venture capital must you raise?

- Because you are smarter than everyone else, you can get away with a small team in just two years:
 - Seven digital designers
 - Three analog designers
 - Five support personnel
Solution

- Digital designers:
 - $70k salary
 - $30k overhead
 - $10k computer
 - $10k CAD tools
 - Total: $120k * 7 = $840k

- Analog designers
 - $100k salary
 - $30k overhead
 - $10k computer
 - $100k CAD tools
 - Total: $240k * 3 = $720k

- Support staff
 - $45k salary
 - $20k overhead
 - $5k computer
 - Total: $70k * 5 = $350k

- Fabrication
 - Back-end tools: $1M
 - Masks: $5M
 - Total: $6M / year

- Summary
 - 2 years @ $7.91M / year
 - $16M design & prototype

Digital designers:

- $70k salary
- $30k overhead
- $10k computer
- $10k CAD tools
- Total: $120k * 7 = $840k

Analog designers

- $100k salary
- $30k overhead
- $10k computer
- $100k CAD tools
- Total: $240k * 3 = $720k

Support staff

- $45k salary
- $20k overhead
- $5k computer
- Total: $70k * 5 = $350k

Fabrication

- Back-end tools: $1M
- Masks: $5M
- Total: $6M / year

Summary

- 2 years @ $7.91M / year
- $16M design & prototype