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Outline
q Comparators
q Shifters
q Multi-input Adders
q Multipliers
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Comparators
q 0�s detector: A = 00…000
q 1�s detector: A = 11…111
q Equality comparator: A = B
q Magnitude comparator: A < B
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1�s & 0�s Detectors
q 1�s detector: N-input AND gate
q 0�s detector: NOTs + 1�s detector (N-input NOR)
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Equality Comparator
q Check if each bit is equal (XNOR, aka equality gate)
q 1�s detect on bitwise equality
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Magnitude Comparator
q Compute B – A and look at sign
q B – A = B + ~A + 1
q For unsigned numbers, carry out is sign bit
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Signed vs. Unsigned
q For signed numbers, comparison is harder

– C: carry out
– Z: zero (all bits of A – B are 0)
– N: negative (MSB of result)
– V: overflow (inputs had different signs, output sign ≠ B)
– S: N xor V (sign of result)
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Shifters
q Logical Shift:

– Shifts number left or right and fills with 0�s
• 1011 LSR 1 = 0101 1011 LSL1 = 0110

q Arithmetic Shift:
– Shifts number left or right.  Rt shift sign extends

• 1011 ASR1 = 1101 1011 ASL1 = 0110
q Rotate:

– Shifts number left or right and fills with lost bits
• 1011 ROR1 = 1101 1011 ROL1 = 0111
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Funnel Shifter
q A funnel shifter can do all six types of shifts
q Selects N-bit field Y from 2N–1-bit input

– Shift by k bits (0 ≤ k < N)
– Logically involves N N:1 multiplexers
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Funnel Source Generator
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Array Funnel Shifter
q N N-input multiplexers

– Use 1-of-N hot select signals for shift amount
– nMOS pass transistor design (Vt drops!)
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Logarithmic Funnel Shifter
q Log N stages of 2-input muxes

– No select decoding needed
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32-bit Logarithmic Funnel
q Wider multiplexers reduce delay and power
q Operands > 32 bits introduce datapath irregularity
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Barrel Shifter
q Barrel shifters perform right rotations using wrap-

around wires.
q Left rotations are right rotations by N – k = k + 1 bits.
q Shifts are rotations with the end bits masked off.
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Logarithmic Barrel Shifter

Right shift only

Right/Left shift Right/Left Shift & Rotate
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32-bit Logarithmic Barrel
q Datapath never wider than 32 bits
q First stage preshifts by 1 to handle left shifts
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Multi-input Adders
q Suppose we want to add k N-bit words

– Ex: 0001 + 0111 + 1101 + 0010 = 10111
q Straightforward solution: k-1 N-input CPAs

– Large and slow
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Carry Save Addition
q A full adder sums 3 inputs and produces 2 outputs

– Carry output has twice weight of sum output
q N full adders in parallel are called carry save adder

– Produce N sums and N carry outs
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CSA Application
q Use k-2 stages of CSAs

– Keep result in carry-save redundant form
q Final CPA computes actual result
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Multiplication
q Example:

q M x N-bit multiplication
– Produce N M-bit partial products
– Sum these to produce M+N-bit product

    1100 : 1210
    0101 : 510
    1100
   0000
  1100
 0000
00111100 : 6010
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General Form
q Multiplicand: Y = (yM-1, yM-2, …, y1, y0)
q Multiplier: X = (xN-1, xN-2, …, x1, x0)

q Product:
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Dot Diagram
q Each dot represents a bit

partial products
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Array Multiplier
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Rectangular Array
q Squash array to fit rectangular floorplan
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Fewer Partial Products
q Array multiplier requires N partial products
q If we looked at groups of r bits, we could form N/r 

partial products.
– Faster and smaller?
– Called radix-2r encoding

q Ex: r = 2: look at pairs of bits
– Form partial products of 0, Y, 2Y, 3Y
– First three are easy, but 3Y requires adder L
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Booth Encoding
q Instead of 3Y, try –Y, then increment next partial 

product to add 4Y
q Similarly, for 2Y, try –2Y + 4Y in next partial product
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Booth Hardware
q Booth encoder generates control lines for each PP

– Booth selectors choose PP bits
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Sign Extension
q Partial products can be negative

– Require sign extension, which is cumbersome
– High fanout on most significant bit

m
ultiplier x

x0

x15

0

0
0

x-1

x16
x17

s
sssssssssssssss

s
sssssssssssss

s
sssssssssss

s
sssssssss

s
sssssss

s
sssss

s
sss

s
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8



CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 29

Simplified Sign Ext.
q Sign bits are either all 0�s or all 1�s

– Note that all 0�s is all 1�s + 1 in proper column
– Use this to reduce loading on MSB
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Even Simpler Sign Ext.
q No need to add all the 1�s in hardware

– Precompute the answer!
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Advanced Multiplication
q Signed vs. unsigned inputs
q Higher radix Booth encoding
q Array vs. tree CSA networks


