
Lecture 13:
Datapath
Functional
Units

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 2

Outline
q Comparators
q Shifters
q Multi-input Adders
q Multipliers

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 3

Comparators
q 0�s detector: A = 00…000
q 1�s detector: A = 11…111
q Equality comparator: A = B
q Magnitude comparator: A < B

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 4

1�s & 0�s Detectors
q 1�s detector: N-input AND gate
q 0�s detector: NOTs + 1�s detector (N-input NOR)

A0
A1

A2
A3

A4
A5

A6
A7

allones

A0
A1

A2
A3

allzeros

allones

A1

A2
A3

A4
A5

A6
A7

A0

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 5

Equality Comparator
q Check if each bit is equal (XNOR, aka equality gate)
q 1�s detect on bitwise equality

A[0]
B[0]

A = B

A[1]
B[1]
A[2]
B[2]
A[3]
B[3]

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 6

Magnitude Comparator
q Compute B – A and look at sign
q B – A = B + ~A + 1
q For unsigned numbers, carry out is sign bit

A0

B0

A1

B1

A2

B2

A3

B3

A = BZ

C

A B£

N A B³

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 7

Signed vs. Unsigned
q For signed numbers, comparison is harder

– C: carry out
– Z: zero (all bits of A – B are 0)
– N: negative (MSB of result)
– V: overflow (inputs had different signs, output sign ≠ B)
– S: N xor V (sign of result)

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 8

Shifters
q Logical Shift:

– Shifts number left or right and fills with 0�s
• 1011 LSR 1 = 0101 1011 LSL1 = 0110

q Arithmetic Shift:
– Shifts number left or right. Rt shift sign extends

• 1011 ASR1 = 1101 1011 ASL1 = 0110
q Rotate:

– Shifts number left or right and fills with lost bits
• 1011 ROR1 = 1101 1011 ROL1 = 0111

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 9

Funnel Shifter
q A funnel shifter can do all six types of shifts
q Selects N-bit field Y from 2N–1-bit input

– Shift by k bits (0 ≤ k < N)
– Logically involves N N:1 multiplexers

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 10

Funnel Source Generator

Rotate Right
Logical Right

Arithmetic Right

Rotate Left
Logical/Arithmetic Left

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 11

Array Funnel Shifter
q N N-input multiplexers

– Use 1-of-N hot select signals for shift amount
– nMOS pass transistor design (Vt drops!)

k[1:0]

s0s1s2s3
Y3

Y2

Y1

Y0

Z0Z1Z2Z3Z4

Z5

Z6

left Inverters & Decoder

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 12

Logarithmic Funnel Shifter
q Log N stages of 2-input muxes

– No select decoding needed

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 13

32-bit Logarithmic Funnel
q Wider multiplexers reduce delay and power
q Operands > 32 bits introduce datapath irregularity

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 14

Barrel Shifter
q Barrel shifters perform right rotations using wrap-

around wires.
q Left rotations are right rotations by N – k = k + 1 bits.
q Shifts are rotations with the end bits masked off.

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 15

Logarithmic Barrel Shifter

Right shift only

Right/Left shift Right/Left Shift & Rotate

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 16

32-bit Logarithmic Barrel
q Datapath never wider than 32 bits
q First stage preshifts by 1 to handle left shifts

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 17

Multi-input Adders
q Suppose we want to add k N-bit words

– Ex: 0001 + 0111 + 1101 + 0010 = 10111
q Straightforward solution: k-1 N-input CPAs

– Large and slow

+

+

0001 0111

+

1101 0010

10101

10111

1000

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 18

Carry Save Addition
q A full adder sums 3 inputs and produces 2 outputs

– Carry output has twice weight of sum output
q N full adders in parallel are called carry save adder

– Produce N sums and N carry outs
Z4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 19

CSA Application
q Use k-2 stages of CSAs

– Keep result in carry-save redundant form
q Final CPA computes actual result

4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

 0001
 0111
+1101
 1011
0101_

X
Y
Z
S
C

 0101_
 1011
 +0010
 00011
01010_

X
Y
Z
S
C

 01010_
+ 00011
 10111

A
B
S

10111

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 20

Multiplication
q Example:

q M x N-bit multiplication
– Produce N M-bit partial products
– Sum these to produce M+N-bit product

 1100 : 1210
 0101 : 510
 1100
 0000
 1100
 0000
00111100 : 6010

multiplier
multiplicand

partial
products

product

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 21

General Form
q Multiplicand: Y = (yM-1, yM-2, …, y1, y0)
q Multiplier: X = (xN-1, xN-2, …, x1, x0)

q Product:
1 1 1 1

0 0 0 0

2 2 2
M N N M

j i i j
j i i j

j i i j

P y x x y
- - - -

+

= = = =

æ öæ ö= =ç ÷ç ÷
è øè ø

å å åå

x0y5 x0y4 x0y3 x0y2 x0y1 x0y0

y5 y4 y3 y2 y1 y0
x5 x4 x3 x2 x1 x0

x1y5 x1y4 x1y3 x1y2 x1y1 x1y0
x2y5 x2y4 x2y3 x2y2 x2y1 x2y0

x3y5 x3y4 x3y3 x3y2 x3y1 x3y0
x4y5 x4y4 x4y3 x4y2 x4y1 x4y0

x5y5 x5y4 x5y3 x5y2 x5y1 x5y0
p0p1p2p3p4p5p6p7p8p9p10p11

multiplier
multiplicand

partial
products

product

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 22

Dot Diagram
q Each dot represents a bit

partial products

m
ultiplier x

x0

x15

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 23

Array Multiplier
y0y1y2y3

x0

x1

x2

x3

p0p1p2p3p4p5p6p7

B

ASin Cin

SoutCout

BA

CinCout

Sout

Sin
=

CSA
Array

CPA

critical path BA

Sout

Cout CinCout

Sout

=Cin

BA

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 24

Rectangular Array
q Squash array to fit rectangular floorplan

y0y1y2y3

x0

x1

x2

x3

p0

p1

p2

p3

p4p5p6p7

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 25

Fewer Partial Products
q Array multiplier requires N partial products
q If we looked at groups of r bits, we could form N/r

partial products.
– Faster and smaller?
– Called radix-2r encoding

q Ex: r = 2: look at pairs of bits
– Form partial products of 0, Y, 2Y, 3Y
– First three are easy, but 3Y requires adder L

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 26

Booth Encoding
q Instead of 3Y, try –Y, then increment next partial

product to add 4Y
q Similarly, for 2Y, try –2Y + 4Y in next partial product

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 27

Booth Hardware
q Booth encoder generates control lines for each PP

– Booth selectors choose PP bits

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 28

Sign Extension
q Partial products can be negative

– Require sign extension, which is cumbersome
– High fanout on most significant bit

m
ultiplier x

x0

x15

0

0
0

x-1

x16
x17

s
sssssssssssssss

s
sssssssssssss

s
sssssssssss

s
sssssssss

s
sssssss

s
sssss

s
sss

s
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 29

Simplified Sign Ext.
q Sign bits are either all 0�s or all 1�s

– Note that all 0�s is all 1�s + 1 in proper column
– Use this to reduce loading on MSB

s
111111111111111
s

s
1111111111111
s

s
11111111111
s

s
111111111
s

s
1111111
s

s
11111
s

s
111
s

s
1
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 30

Even Simpler Sign Ext.
q No need to add all the 1�s in hardware

– Precompute the answer!

s
sss

s
s1

s
s1

s
s1

s
s1

s
s1

s
s1

s
s

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8

CMOS VLSI DesignCMOS VLSI Design 4th Ed.18: Datapath Functional Units 31

Advanced Multiplication
q Signed vs. unsigned inputs
q Higher radix Booth encoding
q Array vs. tree CSA networks

