

Lecture 11: Sequential Circuit Design

Outline

- Sequencing
- □ Sequencing Element Design
- Max and Min-Delay
- □ Clock Skew
- Time Borrowing
- □ Two-Phase Clocking

Sequencing

- ☐ Combinational logic
 - output depends on current inputs
- □ Sequential logic
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called state or tokens
 - Ex: FSM, pipeline

Finite State Machine

Pipeline

Sequencing Cont.

- ☐ If tokens moved through pipeline at constant speed, no sequencing elements would be necessary
- ☐ Ex: fiber-optic cable
 - Light pulses (tokens) are sent down cable
 - Next pulse sent before first reaches end of cable
 - No need for hardware to separate pulses
 - But dispersion sets min time between pulses
- ☐ This is called wave pipelining in circuits
- ☐ In most circuits, dispersion is high
 - Delay fast tokens so they don't catch slow ones.

Sequencing Overhead

- ☐ Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- ☐ Inevitably adds some delay to the slow tokens
- ☐ Makes circuit slower than just the logic delay
 - Called sequencing overhead
- Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

Sequencing Elements

- □ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- ☐ Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

- Pass Transistor Latch
- Pros
 - +
 - +
- Cons
 - ___
 - ___
 - _
 - ___
 - ___

Used in 1970's

- □ Transmission gate
 - +
 - _

- ☐ Inverting buffer
 - +
 - +
 - + Fixes either
 - •
 - •

- ☐ Tristate feedback
 - +
 - ___
- □ Static latches are now essential because of leakage

- Buffered input
 - +
 - +

- Buffered output
 - +

- Widely used in standard cells
 - + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

- Datapath latch
 - +
 - +
 - _

Flip-Flop Design

☐ Flip-flop is built as pair of back-to-back latches

Enable

- \Box Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew

Reset

- Force output low when reset asserted
- ☐ Synchronous vs. asynchronous

Set / Reset

- Set forces output high when enabled
- ☐ Flip-flop with asynchronous set and reset

Sequencing Methods

- □ Flip-flops
- 2-Phase Latches
- Pulsed Latches

Timing Diagrams

Contamination and Propagation Delays

t_{pd}	Logic Prop. Delay	
t _{cd}	Logic Cont. Delay	
t _{pcq}	Latch/Flop Clk->Q Prop. Delay	
t _{ccq}	Latch/Flop Clk->Q Cont. Delay	
t _{pdq}	Latch D->Q Prop. Delay	
t _{cdq}	Latch D->Q Cont. Delay	
t _{setup}	etup Latch/Flop Setup Time	
t _{hold}	Latch/Flop Hold Time	

Max-Delay: Flip-Flops

Max Delay: 2-Phase Latches

Max Delay: Pulsed Latches

Min-Delay: Flip-Flops

$$t_{cd} \ge$$

Min-Delay: 2-Phase Latches

$$t_{cd1}, t_{cd2} \ge$$

Hold time reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!

Min-Delay: Pulsed Latches

 $t_{cd} \ge$

Hold time increased by pulse width

Time Borrowing

- ☐ In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- □ In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

Time Borrowing Example

Loops may borrow time internally but must complete within the cycle

How Much Borrowing?

2-Phase Latches

$$t_{\text{borrow}} \le \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$$

Pulsed Latches

$$t_{\rm borrow} \leq t_{pw} - t_{\rm setup}$$

Clock Skew

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing

Skew: Flip-Flops

$$t_{pd} \le T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$$

Skew: Latches

2-Phase Latches

$$t_{pd} \le T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}}$$

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

$$t_{\text{borrow}} \le \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$$

Pulsed Latches

$$t_{pd} \leq T_c - \max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\right)$$
sequencing overhead

$$t_{cd} \ge t_{\text{hold}} + t_{pw} - t_{ccq} + t_{\text{skew}}$$

$$t_{\text{borrow}} \le t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$$

Two-Phase Clocking

- ☐ If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- ☐ In this class, working chips are most important
 - No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- \Box Call these clocks φ_1 , φ_2 (ph1, ph2)

Safe Flip-Flop

- ☐ Past years used flip-flop with nonoverlapping clocks
 - Slow nonoverlap adds to setup time
 - But no hold times
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Adaptive Sequencing

- Designers include timing margin
 - Voltage
 - Temperature
 - Process variation
 - Data dependency
 - Tool inaccuracies

- □ Alternative: run faster and check for near failures
 - Idea introduced as "Razor"
 - Increase frequency until at the verge of error
 - Can reduce cycle time by ~30%

Summary

- ☐ Flip-Flops:
 - Very easy to use, supported by all tools
- □ 2-Phase Transparent Latches:
 - Lots of skew tolerance and time borrowing
- Pulsed Latches:
 - Fast, some skew tol & borrow, hold time risk

	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay t_{cd}	Time borrowing t_{borrow}
Flip-Flops	$t_{pcq} + t_{\text{setup}} + t_{\text{skew}}$	$t_{\rm hold} - t_{ccq} + t_{\rm skew}$	0
Two-Phase Transparent Latches	$2t_{pdq}$	$t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle	$\frac{T_{c}}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$
Pulsed Latches	$\max \Big(t_{pdq}, t_{peq} + t_{\rm setup} - t_{pw} + t_{\rm skew}\Big)$	$t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$	$t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$