

Outline

\square Power and Energy
\square Dynamic Power

- Static Power

Power and Energy

\square Power is drawn from a voltage source attached to the $V_{D D} \operatorname{pin}(\mathrm{~s})$ of a chip.

- Instantaneous Power: $\quad P(t)=$
- Energy:

$$
E=
$$

\square Average Power:
$P_{\text {avg }}=$

Power in Circuit Elements

$$
\begin{aligned}
& P_{V D D}(t)=I_{D D}(t) V_{D D} \\
& P_{R}(t)=\frac{V_{R}^{2}(t)}{R}=I_{R}^{2}(t) R \\
& E_{C}=\int_{0}^{\infty} I(t) V(t) d t=\int_{0}^{\infty} C \frac{d V^{2}}{d t} V(t) d t \\
& \quad=C \int_{0}^{V_{C}} V(t) d V=\frac{1}{2} C V_{C}^{2}
\end{aligned}
$$

$$
\left.{\stackrel{+}{V_{D D}}}_{+}^{+} \uparrow_{T}\right|_{\mathrm{DD}}
$$

$$
\left.\stackrel{V}{R}_{+}^{V_{R}}\right\} \mid I_{R}
$$

Charging a Capacitor

$\square \quad$ When the gate output rises

- Energy stored in capacitor is

$$
E_{C}=\frac{1}{2} C_{L} V_{D D}^{2}
$$

- But energy drawn from the supply is

$$
\begin{aligned}
E_{V D D} & =\int_{0}^{\infty} I(t) V_{D D} d t=\int_{0}^{\infty} C_{L} \frac{d V}{d t} V_{D D} d t \\
& =C_{L} V_{D D} \int_{0}^{V_{D D}} d V=C_{L} V_{D D}^{2}
\end{aligned}
$$

- Half the energy from $V_{D D}$ is dissipated in the pMOS transistor as heat, other half stored in capacitor
\square When the gate output falls
- Energy in capacitor is dumped to GND
- Dissipated as heat in the nMOS transistor

Switching Waveforms

\square Example: $\mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{fF}, \mathrm{f}=1 \mathrm{GHz}$

Switching Power

$$
\begin{aligned}
P_{\text {switching }} & =\frac{1}{T} \int_{0}^{T} i_{D D}(t) V_{D D} d t \\
& =\frac{V_{D D}}{T} \int_{0}^{T} i_{D D}(t) d t \\
& =\frac{V_{D D}}{T}\left[T f_{s w} C V_{D D}\right] \\
& =C V_{D D}{ }^{2} f_{\mathrm{sw}}
\end{aligned}
$$

Activity Factor

\square Suppose the system clock frequency $=\mathrm{f}$
\square Let $\mathrm{f}_{\mathrm{sw}}=\alpha \mathrm{f}$, where $\alpha=$ activity factor

- If the signal is a clock, $\alpha=1$
- If the signal switches once per cycle, $\alpha=1 / 2$
\square Dynamic power:
$P_{\text {switching }}=\alpha C V_{D D}{ }^{2} f$

Short Circuit Current

When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
\square Leads to a blip of "short circuit" current.
$\square<10 \%$ of dynamic power if rise/fall times are comparable for input and output
\square We will generally ignore this component

Power Dissipation Sources

- $P_{\text {total }}=P_{\text {dynamic }}+P_{\text {static }}$
\square Dynamic power: $P_{\text {dynamic }}=P_{\text {switching }}+P_{\text {shortcircuit }}$
- Switching load capacitances
- Short-circuit current

Static power: $P_{\text {static }}=\left(I_{\text {sub }}+I_{\text {gate }}+I_{\text {junct }}+I_{\text {contention }}\right) V_{D D}$

- Subthreshold leakage
- Gate leakage
- Junction leakage
- Contention current

Dynamic Power Example

- 1 billion transistor chip
- 50M logic transistors
- Average width: 12λ
- Activity factor = 0.1
- 950M memory transistors
- Average width: 4λ
- Activity factor $=0.02$
- 1.0 V 65 nm process
$-\mathrm{C}=1 \mathrm{fF} / \mu \mathrm{m}$ (gate) $+0.8 \mathrm{fF} / \mu \mathrm{m}$ (diffusion)
\square Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Solution

$$
\begin{aligned}
& C_{\text {logic }}=\left(50 \times 10^{6}\right)(12 \lambda)(0.025 \mu \mathrm{~m} / \lambda)(1.8 \mathrm{fF} / \mu \mathrm{m})=27 \mathrm{nF} \\
& C_{\text {mem }}=\left(950 \times 10^{6}\right)(4 \lambda)(0.025 \mu \mathrm{~m} / \lambda)(1.8 \mathrm{fF} / \mu \mathrm{m})=171 \mathrm{nF} \\
& P_{\text {dynamic }}=\left[0.1 C_{\text {logic }}+0.02 C_{\text {mem }}\right](1.0)^{2}(1.0 \mathrm{GHz})=6.1 \mathrm{~W}
\end{aligned}
$$

Dynamic Power Reduction

- $P_{\text {switching }}=\alpha C V_{D D}{ }^{2} f$
\square Try to minimize:
- Activity factor
- Capacitance
- Supply voltage
- Frequency

Activity Factor Estimation

\square Let $\mathrm{P}_{\mathrm{i}}=\operatorname{Prob}($ node $\mathrm{i}=1)$
$-\bar{P}_{i}=1-P_{i}$
$\square \alpha_{i}=\bar{P}_{i}{ }^{*} P_{i}$
Completely random data has $\mathrm{P}=0.5$ and $\alpha=0.25$
\square Data is often not completely random

- e.g. upper bits of 64-bit words representing bank account balances are usually 0
\square Data propagating through ANDs and ORs has lower activity factor
- Depends on design, but typically $\alpha \approx 0.1$

Switching Probability

Gate	P_{Y}
AND2	$P_{A} P_{B}$
AND3	$P_{A} P_{B} P_{C}$
OR2	$1-\bar{P}_{A} \bar{P}_{B}$
NAND2	$1-P_{A} P_{B}$
NOR2	$\bar{P}_{A} \bar{P}_{B}$
XOR2	$P_{A} \bar{P}_{B}+\bar{P}_{A} P_{B}$

Example

A 4-input AND is built out of two levels of gates
\square Estimate the activity factor at each node if the inputs have $\mathrm{P}=0.5$

Clock Gating

\square The best way to reduce the activity is to turn off the clock to registers in unused blocks

- Saves clock activity ($\alpha=1$)
- Eliminates all switching activity in the block
- Requires determining if block will be used

Registers

Capacitance

- Gate capacitance
- Fewer stages of logic
- Small gate sizes
\square Wire capacitance
- Good floorplanning to keep communicating blocks close to each other
- Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

\square Run each block at the lowest possible voltage and frequency that meets performance requirements
\square Voltage Domains

- Provide separate supplies to different blocks
- Level converters required when crossing from low to high $V_{D D}$ domains

\square Dynamic Voltage Scaling
- Adjust V_{DD} and f according to workload

Static Power

\square Static power is consumed even when chip is quiescent.

- Leakage draws power from nominally OFF devices
- Ratioed circuits burn power in fight between ON transistors

Static Power Example

\square Revisit power estimation for 1 billion transistor chip
\square Estimate static power consumption

- Subthreshold leakage
- Normal V_{t} : $100 \mathrm{nA} / \mu \mathrm{m}$
- High V_{t} : $10 \mathrm{nA} / \mu \mathrm{m}$
- High Vt used in all memories and in 95% of logic gates
- Gate leakage $5 \mathrm{nA} / \mu \mathrm{m}$
- Junction leakage negligible

Solution

$$
\begin{aligned}
& W_{\text {normal-v }}=\left(50 \times 10^{6}\right)(12 \lambda)(0.025 \mu \mathrm{~m} / \lambda)(0.05)=0.75 \times 10^{6} \mu \mathrm{~m} \\
& W_{\text {high- }-\mathrm{t}}=\left[\left(50 \times 10^{6}\right)(12 \lambda)(0.95)+\left(950 \times 10^{6}\right)(4 \lambda)\right](0.025 \mu \mathrm{~m} / \lambda)=109.25 \times 10^{6} \mu \mathrm{~m} \\
& I_{\text {sub }}=\left[W_{\text {normal- } \mathrm{V}_{\mathrm{t}}} \times 100 \mathrm{nA} / \mu \mathrm{m}+W_{\text {high- }_{\mathrm{t}}} \times 10 \mathrm{nA} / \mu \mathrm{m}\right] / 2=584 \mathrm{~mA} \\
& I_{\text {gate }}=\left[\left(W_{\text {normal- } \mathrm{v}_{\mathrm{t}}}+W_{\text {high- } \mathrm{v}_{\mathrm{t}}}\right) \times 5 \mathrm{nA} / \mu \mathrm{m}\right] / 2=275 \mathrm{~mA} \\
& \mathrm{P}_{\text {static }}=(584 \mathrm{~mA}+275 \mathrm{~mA})(1.0 \mathrm{~V})=859 \mathrm{~mW}
\end{aligned}
$$

Subthreshold Leakage

- For $V_{d s}>50 \mathrm{mV}$

$$
I_{\text {sub }} \approx I_{\text {off }} 10^{\frac{V_{g s}+\eta\left(V_{d s}-V_{D D}\right)-k_{y} V_{\text {sb }}}{s}}
$$

- $\mathrm{I}_{\text {off }}=$ leakage at $\mathrm{V}_{\mathrm{gs}}=0, \mathrm{~V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{DD}}$

Typical values in 65 nm
$\mathrm{I}_{\text {off }}=100 \mathrm{nA} / \mu \mathrm{m} @ \mathrm{~V}_{\mathrm{t}}=0.3 \mathrm{~V}$
$\mathrm{I}_{\text {off }}=10 \mathrm{nA} / \mu \mathrm{m} @ \mathrm{~V}_{\mathrm{t}}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {off }}=1 \mathrm{nA} / \mu \mathrm{m} @ \mathrm{~V}_{\mathrm{t}}=0.5 \mathrm{~V}$
$\eta=0.1$
$k_{y}=0.1$
S $=100 \mathrm{mV} /$ decade

Stack Effect

\square Series OFF transistors have less leakage $-V_{x}>0$, so $N 2$ has negative $V_{g s}$

$$
I_{\text {sub }}=\underbrace{I_{\text {off }} 10^{\frac{\eta\left(V_{x}-V_{D D}\right)}{s}}}_{N 2}=\underbrace{I_{\text {off }} 10^{\frac{-V_{x}+\eta\left(\left(V_{D D}-V_{x}\right)-V_{D D}\right)-k_{y} V_{x}}{s}}}_{N 1}
$$

$V_{x}=\frac{\eta V_{D D}}{1+2 \eta+k_{\gamma}}$
$I_{\text {sub }}=I_{\text {off }} 10^{-\eta V_{\text {o }}\left(\frac{1+\eta+k_{r}}{1+2 \eta+k_{y}}\right)} \approx_{\text {off }} 10^{\frac{-\eta V_{\text {on }}}{S}}$

- Leakage through 2-stack reduces $\sim 10 x$
- Leakage through 3-stack reduces further

Leakage Control

\square Leakage and delay trade off

- Aim for low leakage in sleep and low delay in active mode
\square To reduce leakage:
- Increase V_{t} : multiple V_{t}
- Use low V_{t} only in critical circuits
- Increase V_{s} : stack effect
- Input vector control in sleep
- Decrease V_{b}
- Reverse body bias in sleep
- Or forward body bias in active mode

Gate Leakage

\square Extremely strong function of t_{ox} and V_{gs}

- Negligible for older processes
- Approaches subthreshold leakage at 65 nm and below in some processes
\square An order of magnitude less for pMOS than nMOS
- Control leakage in the process using $t_{\text {ox }}>10.5 \AA$
- High-k gate dielectrics help
- Some processes provide multiple $t_{\text {ox }}$
- e.g. thicker oxide for 3.3 V I/O transistors
\square Control leakage in circuits by limiting $V_{D D}$

NAND3 Leakage Example

- 100 nm process

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{gn}}=6.3 \mathrm{nA} & \mathrm{I}_{\mathrm{gp}}=0 \\
\mathrm{I}_{\text {off }}=5.63 \mathrm{nA} & \mathrm{I}_{\text {offp }}=9.3 \mathrm{nA}
\end{array}
$$

Input State (ABC)	$I_{\text {sub }}$	$I_{\text {gate }}$	$I_{\text {total }}$	V_{x}	V_{z}
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	$V_{D D}-V_{t}$
010	0	1.3	1.3	intermediate	intermediate
011	3.8	0	10.1	$V_{D D}-V_{t}$	$V_{D D}-V_{t}$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{D D}-V_{t}$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

Junction Leakage

\square From reverse-biased p-n junctions

- Between diffusion and substrate or well
\square Ordinary diode leakage is negligible
\square Band-to-band tunneling (BTBT) can be significant
- Especially in high $-\mathrm{V}_{\mathrm{t}}$ transistors where other leakage is small
- Worst at $\mathrm{V}_{\mathrm{db}}=\mathrm{V}_{\mathrm{DD}}$
\square Gate-induced drain leakage (GIDL) exacerbates
- Worst for $\mathrm{V}_{\mathrm{gd}}=-\mathrm{V}_{\mathrm{DD}}$ (or more negative)

Power Gating

\square Turn OFF power to blocks when they are idle to save leakage

- Use virtual $V_{D D}\left(V_{D D V}\right)$
- Gate outputs to prevent invalid logic levels to next block

\square Voltage drop across sleep transistor degrades performance during normal operation
- Size the transistor wide enough to minimize impact
\square Switching wide sleep transistor costs dynamic power
- Only justified when circuit sleeps long enough

