

Lecture 7: Power

Outline

- Power and Energy
- Dynamic Power
- □ Static Power

Power in Circuit Elements

Charging a Capacitor

- When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

- But energy drawn from the supply is

$$E_{VDD} = \int_{0}^{\infty} I(t) V_{DD} dt = \int_{0}^{\infty} C_L \frac{dV}{dt} V_{DD} dt$$
$$= C_L V_{DD} \int_{0}^{V_{DD}} dV = C_L V_{DD}^2$$

- Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- ❑ When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the nMOS transistor

Activity Factor

- □ Suppose the system clock frequency = f
- \Box Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, α = 1
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$

Dynamic power:

$$P_{\rm switching} = \alpha C V_{DD}^2 f$$

7: Power

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- □ Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output</p>
- We will generally ignore this component

Power Dissipation Sources

- $\square P_{total} = P_{dynamic} + P_{static}$
- **Dynamic power:** $P_{dynamic} = P_{switching} + P_{shortcircuit}$
 - Switching load capacitances
 - Short-circuit current
- □ Static power: $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

Dynamic Power Example

- **1** billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 λ
 - Activity factor = 0.02
 - 1.0 V 65 nm process
 - C = 1 fF/ μ m (gate) + 0.8 fF/ μ m (diffusion)
- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Solution

$$C_{\text{logic}} = (50 \times 10^{6})(12\lambda)(0.025\,\mu m / \lambda)(1.8\,fF / \mu m) = 27 \text{ nF}$$
$$C_{\text{mem}} = (950 \times 10^{6})(4\lambda)(0.025\,\mu m / \lambda)(1.8\,fF / \mu m) = 171 \text{ nF}$$
$$P_{\text{dynamic}} = [0.1C_{\text{logic}} + 0.02C_{\text{mem}}](1.0)^{2}(1.0 \text{ GHz}) = 6.1 \text{ W}$$

7: Power

Dynamic Power Reduction

- **T**ry to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

Activity Factor Estimation

```
\Box \text{ Let } P_i = Prob(node i = 1)
```

$$-\overline{P}_i = 1-P_i$$

$$\Box \alpha_i = \overline{P}_i * P$$

Completely random data has P = 0.5 and α = 0.25

Data is often not completely random

- e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically $\alpha \thickapprox 0.1$

Switching Probability

Gate	P _Y
AND2	$P_A P_B$
AND3	$P_A P_B P_C$
OR2	$1 - \overline{P}_A \overline{P}_B$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\mathcal{A}}\overline{P}_{B}$
XOR2	$P_{\mathcal{A}}\overline{P}_B + \overline{P}_{\mathcal{A}}P_B$

7: Power

Clock Gating

- The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity (α = 1)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used

Capacitance

- Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
- □ Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains

Static Power

- □ Static power is consumed even when chip is quiescent.
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in fight between ON transistors

Static Power Example

- □ Revisit power estimation for 1 billion transistor chip
- Estimate static power consumption
 - Subthreshold leakage
 - Normal V_t: 100 nA/μm
 - High V_t : 10 nA/ μ m
 - High Vt used in all memories and in 95% of logic gates
 - Gate leakage 5 nA/μm
 - Junction leakage negligible

Solution

$$W_{\text{normal-V}_{t}} = (50 \times 10^{6})(12\lambda)(0.025\,\mu\text{m} / \lambda)(0.05) = 0.75 \times 10^{6} \ \mu\text{m}$$
$$W_{\text{high-V}_{t}} = \left[(50 \times 10^{6})(12\lambda)(0.95) + (950 \times 10^{6})(4\lambda) \right] (0.025\,\mu\text{m} / \lambda) = 109.25 \times 10^{6} \ \mu\text{m}$$
$$I_{sub} = \left[W_{\text{normal-V}_{t}} \times 100 \ \text{nA} / \mu\text{m} + W_{\text{high-V}_{t}} \times 10 \ \text{nA} / \mu\text{m} \right] / 2 = 584 \ \text{mA}$$
$$I_{gate} = \left[(W_{\text{normal-V}_{t}} + W_{\text{high-V}_{t}}) \times 5 \ \text{nA} / \mu\text{m} \right] / 2 = 275 \ \text{mA}$$
$$P_{static} = (584 \ \text{mA} + 275 \ \text{mA})(1.0 \ \text{V}) = 859 \ \text{mW}$$

7: Power

Subthreshold Leakage

CMOS VLSI Design ^{4th Ed.}

□ For V_{ds} > 50 mV

$$I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$

 $I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$
□ I_{off} = leakage at V_{gs} = 0, V_{ds} = V_{DD}
 $I_{off} = 10 \text{ nA}/\mu \text{m} \quad @ V_t = 0.3 \text{ V}}{0 \text{ of } = 10 \text{ nA}/\mu \text{m}} \quad @ V_t = 0.4 \text{ V}}{0 \text{ of } = 1 \text{ nA}/\mu \text{m}} \quad @ V_t = 0.5 \text{ V}}{\eta = 0.1}$
 $K_{\gamma} = 0.1$
 $S = 100 \text{ mV/decade}$

7: Power

23

in 65 nm

@ $V_t = 0.4 V$

(0) V_t = 0.5 V

7: Power

CMOS VLSI Design 4th Ed.

24

Leakage Control

□ Leakage and delay trade off

- Aim for low leakage in sleep and low delay in active mode
- □ To reduce leakage:
 - Increase V_t : *multiple* V_t
 - Use low V_t only in critical circuits
 - Increase V_s: stack effect
 - Input vector control in sleep
 - Decrease V_b
 - Reverse body bias in sleep
 - Or forward body bias in active mode

Gate Leakage

- \Box Extremely strong function of t_{ox} and V_{gs}
 - Negligible for older processes
 - Approaches subthreshold leakage at 65 nm and below in some processes
- □ An order of magnitude less for pMOS than nMOS
- □ Control leakage in the process using t_{ox} > 10.5 Å
 - High-k gate dielectrics help
 - Some processes provide multiple t_{ox}
 - e.g. thicker oxide for 3.3 V I/O transistors
 - Control leakage in circuits by limiting V_{DD}

Junction Leakage

- □ From reverse-biased p-n junctions
 - Between diffusion and substrate or well
- ☐ Ordinary diode leakage is negligible
- Band-to-band tunneling (BTBT) can be significant
 - Especially in high-V $_{\rm t}$ transistors where other leakage is small
 - Worst at V_{db} = V_{DD}
- Gate-induced drain leakage (GIDL) exacerbates
 - Worst for $V_{gd} = -V_{DD}$ (or more negative)

