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Power and Energy
Dynamic Power
Static Power



7: Power 3CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Power and Energy
Power is drawn from a voltage source attached to 
the VDD pin(s) of a chip.

Instantaneous Power:
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Power in Circuit Elements
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Charging a Capacitor
When the gate output rises
– Energy stored in capacitor is

– But energy drawn from the supply is

– Half the energy from VDD is dissipated in the pMOS 
transistor as heat, other half stored in capacitor

When the gate output falls
– Energy in capacitor is dumped to GND
– Dissipated as heat in the nMOS transistor
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Switching Waveforms
Example: VDD = 1.0 V, CL = 150 fF, f = 1 GHz
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Switching Power
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Activity Factor
Suppose the system clock frequency = f
Let fsw = αf, where α = activity factor
– If the signal is a clock, α = 1
– If the signal switches once per cycle, α = ½

Dynamic power:
2

switching DDP CV fα=
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Short Circuit Current
When transistors switch, both nMOS and pMOS 
networks may be momentarily ON at once
Leads to a blip of “short circuit” current.
< 10% of dynamic power if rise/fall times are 
comparable for input and output
We will generally ignore this component
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Power Dissipation Sources
Ptotal = Pdynamic + Pstatic

Dynamic power: Pdynamic = Pswitching + Pshortcircuit

– Switching load capacitances
– Short-circuit current

Static power: Pstatic = (Isub + Igate + Ijunct + Icontention)VDD

– Subthreshold leakage
– Gate leakage
– Junction leakage
– Contention current
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Dynamic Power Example
1 billion transistor chip
– 50M logic transistors

• Average width: 12 λ
• Activity factor = 0.1

– 950M memory transistors
• Average width: 4 λ
• Activity factor = 0.02

– 1.0 V 65 nm process
– C = 1 fF/μm (gate) + 0.8 fF/μm (diffusion)

Estimate dynamic power consumption @ 1 GHz.  
Neglect wire capacitance and short-circuit current.
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Solution
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Dynamic Power Reduction

Try to minimize:
– Activity factor
– Capacitance
– Supply voltage
– Frequency

2
switching DDP CV fα=
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Activity Factor Estimation
Let Pi = Prob(node i = 1)
– Pi = 1-Pi

αi = Pi * Pi

Completely random data has P = 0.5 and α = 0.25
Data is often not completely random
– e.g. upper bits of 64-bit words representing bank 

account balances are usually 0 
Data propagating through ANDs and ORs has lower 
activity factor
– Depends on design, but typically α ≈ 0.1
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Switching Probability
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Example
A 4-input AND is built out of two levels of gates
Estimate the activity factor at each node if the inputs 
have P = 0.5
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Clock Gating
The best way to reduce the activity is to turn off the 
clock to registers in unused blocks
– Saves clock activity (α = 1)
– Eliminates all switching activity in the block
– Requires determining if block will be used
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Capacitance
Gate capacitance
– Fewer stages of logic
– Small gate sizes

Wire capacitance
– Good floorplanning to keep communicating 

blocks close to each other
– Drive long wires with inverters or buffers rather 

than complex gates
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Voltage / Frequency
Run each block at the lowest possible voltage and 
frequency that meets performance requirements
Voltage Domains
– Provide separate supplies to different blocks
– Level converters required when crossing 

from low to high VDD domains

Dynamic Voltage Scaling
– Adjust VDD and f according to 

workload
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Static Power
Static power is consumed even when chip is 
quiescent.
– Leakage draws power from nominally OFF 

devices
– Ratioed circuits burn power in fight between ON 

transistors
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Static Power Example
Revisit power estimation for 1 billion transistor chip
Estimate static power consumption
– Subthreshold leakage

• Normal Vt: 100 nA/μm
• High Vt: 10 nA/μm
• High Vt used in all memories and in 95% of 

logic gates
– Gate leakage 5 nA/μm
– Junction leakage negligible



7: Power 22CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Solution
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Subthreshold Leakage
For Vds > 50 mV

Ioff = leakage at Vgs = 0, Vds = VDD
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10
gs ds DD sbV V V k V

S
sub offI I

γη+ − −

≈

Typical values in 65 nm
Ioff = 100 nA/μm @ Vt = 0.3 V
Ioff = 10 nA/μm   @ Vt = 0.4 V
Ioff = 1 nA/μm     @ Vt = 0.5 V
η = 0.1
kγ = 0.1
S  = 100 mV/decade
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Stack Effect
Series OFF transistors have less leakage
– Vx > 0, so N2 has negative Vgs

– Leakage through 2-stack reduces ~10x
– Leakage through 3-stack reduces further
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Leakage Control
Leakage and delay trade off
– Aim for low leakage in sleep and low delay in 

active mode
To reduce leakage:
– Increase Vt: multiple Vt

• Use low Vt only in critical circuits
– Increase Vs: stack effect

• Input vector control in sleep
– Decrease Vb

• Reverse body bias in sleep
• Or forward body bias in active mode
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Gate Leakage
Extremely strong function of tox and Vgs

– Negligible for older processes
– Approaches subthreshold leakage at 65 nm and 

below in some processes
An order of magnitude less for pMOS than nMOS
Control leakage in the process using tox > 10.5 Å
– High-k gate dielectrics help
– Some processes provide multiple tox

• e.g. thicker oxide for 3.3 V I/O transistors
Control leakage in circuits by limiting VDD
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NAND3 Leakage Example
100 nm process
Ign = 6.3 nA Igp = 0
Ioffn = 5.63 nA Ioffp = 9.3 nA

Data from [Lee03]
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Junction Leakage
From reverse-biased p-n junctions
– Between diffusion and substrate or well

Ordinary diode leakage is negligible
Band-to-band tunneling (BTBT) can be significant
– Especially in high-Vt transistors where other 

leakage is small
– Worst at Vdb = VDD

Gate-induced drain leakage (GIDL) exacerbates
– Worst for Vgd = -VDD (or more negative)
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Power Gating
Turn OFF power to blocks when they are idle to 
save leakage
– Use virtual VDD (VDDV)
– Gate outputs to prevent 

invalid logic levels to next block

Voltage drop across sleep transistor degrades 
performance during normal operation
– Size the transistor wide enough to minimize 

impact
Switching wide sleep transistor costs dynamic power
– Only justified when circuit sleeps long enough


