

Lecture 5: DC \&
 Transient Response

Outline

- Pass Transistors
\square DC Response
\square Logic Levels and Noise Margins
\square Transient Response
- RC Delay Models
\square Delay Estimation

Pass Transistors

\square We have assumed source is grounded
\square What if source >0 ?

- e.g. pass transistor passing $V_{D D}$
- $V_{g}=V_{D D}$
- If $\mathrm{V}_{\mathrm{s}}>\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{gs}}<\mathrm{V}_{\mathrm{t}}$

- Hence transistor would turn itself off
\square nMOS pass transistors pull no higher than $V_{D D}-V_{t n}$
- Called a degraded "1"
- Approach degraded value slowly (low $I_{d s}$)
\square pMOS pass transistors pull no lower than $V_{\text {tp }}$
\square Transmission gates are needed to pass both 0 and 1

Pass Transistor Ckts

DD

5: DC and Transient Response

DC Response

DC Response: $V_{\text {out }}$ vs. $V_{\text {in }}$ for a gate

- Ex: Inverter
- When $V_{\text {in }}=0 \quad->\quad V_{\text {out }}=V_{D D}$
- When $V_{\text {in }}=V_{D D} \quad->\quad V_{\text {out }}=0$
- In between, $V_{\text {out }}$ depends on transistor size and current
- By KCL, must settle such that $I_{\mathrm{dsn}}=\left|I_{\mathrm{dsp}}\right|$

- We could solve equations
- But graphical solution gives more insight

Transistor Operation

Current depends on region of transistor behavior
\square For what $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ are nMOS and pMOS in

- Cutoff?
- Linear?
- Saturation?

nMOS Operation

Cutoff	Linear	Saturated
$\mathrm{V}_{\mathrm{gsn}}<$	$\mathrm{V}_{\mathrm{gsn}}>$	$\mathrm{V}_{\mathrm{gsn}}>$
	$\mathrm{V}_{\mathrm{dsn}}<$	$\mathrm{V}_{\mathrm{dsn}}>$

pMOS Operation

Cutoff	Linear	Saturated
$\begin{aligned} & \mathrm{V}_{\mathrm{gsp}}>\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\mathrm{in}}>\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {gsp }}<\mathrm{V}_{\text {tp }} \\ & \mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\text {dsp }}>\mathrm{V}_{\text {gsp }}-\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tp}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{gsp}}<\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\text {in }}<\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\mathrm{dsp}}<\mathrm{V}_{\mathrm{gsp}}-\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\text {out }}<\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tp}} \\ & \hline \end{aligned}$
$\begin{aligned} & V_{\mathrm{gsp}}=V_{\mathrm{in}}-V_{\mathrm{DD}} \\ & V_{\mathrm{dsp}}=V_{\text {out }}-V_{\mathrm{DD}} \end{aligned}$	$\mathrm{V}_{\mathrm{tp}}<0$	$-\sqrt{\boldsymbol{A}_{\mathrm{dsp}}} \mathrm{~V}_{\text {out }}$

I-V Characteristics

Make pMOS is wider than nMOS such that $\beta_{\mathrm{n}}=\beta_{\mathrm{p}}$

Current vs. $\mathrm{V}_{\text {out }}, \mathrm{V}_{\text {in }}$

Load Line Analysis

\square For a given $\mathrm{V}_{\text {in }}$:

- Plot $\mathrm{I}_{\mathrm{dsn}}, \mathrm{I}_{\mathrm{dsp}}$ vs. $\mathrm{V}_{\text {out }}$
- $V_{\text {out }}$ must be where |currents| are equal in
$\stackrel{l_{\text {dsn }},\left|I_{\text {dsp }}\right| \uparrow}{V_{\text {in1 }}}$

Load Line Analysis

DC Transfer Curve

\square Transcribe points onto $\mathrm{V}_{\text {in }} \mathrm{Vs} . \mathrm{V}_{\text {out }}$ plot

Operating Regions

\square Revisit transistor operating regions

Region	nMOS	pMOS
A		
B		
C		
D		
E		

Beta Ratio

\square If $\beta_{\mathrm{p}} / \beta_{\mathrm{n}} \neq 1$, switching point will move from $\mathrm{V}_{\mathrm{DD}} / 2$
\square Called skewed gate
\square Other gates: collapse into equivalent inverter

Noise Margins

\square How much noise can a gate input see before it does not recognize the input?

Logic Levels

\square To maximize noise margins, select logic levels at

- unity gain point of DC transfer characteristic

Transient Response

$\square D C$ analysis tells us $\mathrm{V}_{\text {out }}$ if $\mathrm{V}_{\text {in }}$ is constant
\square Transient analysis tells us $\mathrm{V}_{\text {out }}(\mathrm{t})$ if $\mathrm{V}_{\text {in }}(\mathrm{t})$ changes

- Requires solving differential equations
\square Input is usually considered to be a step or ramp
- From 0 to $V_{D D}$ or vice versa

Inverter Step Response

\square Ex: find step response of inverter driving load cap

$$
\begin{aligned}
& V_{\text {in }}(t)= \\
& V_{\text {out }}\left(t<t_{0}\right)= \\
& \frac{d V_{\text {out }}(t)}{d t}=
\end{aligned}
$$

$I_{d s n}(t)=\{$

$$
\begin{gathered}
t \leq t_{0} \\
V_{\text {out }}>V_{D D}-V_{t} \\
V_{\text {out }}<V_{D D}-V_{t}
\end{gathered}
$$

Delay Definitions

] $\mathrm{t}_{\mathrm{pdr}}$: rising propagation delay

- From input to rising output crossing $\mathrm{V}_{\mathrm{DD}} / 2$
- $\mathrm{t}_{\text {pdf: }}$ falling propagation delay
- From input to falling output crossing $\mathrm{V}_{\mathrm{DD}} / 2$
$\square \quad \mathbf{t}_{\mathrm{pd}}$: average propagation delay
$-\mathrm{t}_{\mathrm{pd}}=\left(\mathrm{t}_{\mathrm{pdr}}+\mathrm{t}_{\mathrm{pdf}}\right) / 2$
- $\mathbf{t}_{\mathbf{r}}$: rise time
- From output crossing 0.2 $V_{D D}$ to $0.8 V_{D D}$

- t_{f} : fall time
- From output crossing 0.8 $V_{D D}$ to $0.2 \mathrm{~V}_{\mathrm{DD}}$

Delay Definitions

$\square \mathrm{t}_{\mathrm{cdr}}$: rising contamination delay

- From input to rising output crossing $\mathrm{V}_{\mathrm{DD}} / 2$
$\square \mathrm{t}_{\mathrm{cdf}}$: falling contamination delay
- From input to falling output crossing $\mathrm{V}_{\mathrm{DD}} / 2$
$\square \mathbf{t}_{\mathrm{cd}}$: average contamination delay
$-\mathrm{t}_{\mathrm{pd}}=\left(\mathrm{t}_{\mathrm{cdr}}+\mathrm{t}_{\mathrm{cdf}}\right) / 2$

Simulated Inverter Delay

Solving differential equations by hand is too hard
\square SPICE simulator solves the equations numerically

- Uses more accurate I-V models too!
\square But simulations take time to write, may hide insight

Delay Estimation

\square We would like to be able to easily estimate delay

- Not as accurate as simulation
- But easier to ask "What if?"
\square The step response usually looks like a $1^{\text {st }}$ order RC response with a decaying exponential.
\square Use RC delay models to estimate delay
- C = total capacitance on output node
- Use effective resistance R
- So that $t_{p d}=R C$
\square Characterize transistors by finding their effective R
- Depends on average current as gate switches

Effective Resistance

Chockley models have limited value

- Not accurate enough for modern transistors
- Too complicated for much hand analysis
\square Simplification: treat transistor as resistor
- Replace $I_{d s}\left(V_{d s}, V_{g s}\right)$ with effective resistance R
- $I_{d s}=V_{d s} / R$
- R averaged across switching of digital gate
\square Too inaccurate to predict current at any given time
- But good enough to predict RC delay

RC Delay Model

\square Use equivalent circuits for MOS transistors

- Ideal switch + capacitance and ON resistance
- Unit nMOS has resistance R, capacitance C
- Unit pMOS has resistance $2 R$, capacitance C
\square Capacitance proportional to width
\square Resistance inversely proportional to width

RC Values

- Capacitance

$-\mathrm{C}=\mathrm{C}_{\mathrm{g}}=\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{d}}=2 \mathrm{fF} / \mu \mathrm{m}$ of gate width in $0.6 \mu \mathrm{~m}$

- Gradually decline to $1 \mathrm{fF} / \mu \mathrm{m}$ in nanometer techs.
- Resistance
$-\mathrm{R} \approx 6 \mathrm{~K} \Omega^{*} \mu \mathrm{~m}$ in $0.6 \mu \mathrm{~m}$ process
- Improves with shorter channel lengths
\square Unit transistors
- May refer to minimum contacted device (4/2 λ)
- Or maybe $1 \mu \mathrm{~m}$ wide device
- Doesn't matter as long as you are consistent

Inverter Delay Estimate

\square Estimate the delay of a fanout-of-1 inverter

Delay Model Comparison

Example: 3-input NAND

\square Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

\square Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

\square ON transistors look like resistors
\square Pullup or pulldown network modeled as RC ladder
\square Elmore delay of RC ladder
$t_{p d} \approx \sum_{\text {nodes } i} R_{i-t o-\text {-source }} C_{i}$
$=R_{1} C_{1}+\left(R_{1}+R_{2}\right) C_{2}+\ldots+\left(R_{1}+R_{2}+\ldots+R_{N}\right) C_{N}$

Example: 3-input NAND

\square Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

Delay Components

- Delay has two parts
- Parasitic delay
- 9 or 11 RC
- Independent of load
- Effort delay
- 5h RC
- Proportional to load capacitance

Contamination Delay

[Best-case (contamination) delay can be substantially less than propagation delay.

- Ex: If all three inputs fall simultaneously

Diffusion Capacitance

\square We assumed contacted diffusion on every s / d.
\square Good layout minimizes diffusion area
\square Ex: NAND3 layout shares one diffusion contact

- Reduces output capacitance by 2C
- Merged uncontacted diffusion might help too

Layout Comparison

Which layout is better?

