

Outline

[Introduction

- Interconnect Modeling
- Wire Resistance
- Wire Capacitance
- Wire RC Delay
- Crosstalk
- Wire Engineering
- Repeaters

Introduction

\square Chips are mostly made of wires called interconnect

- In stick diagram, wires set size
- Transistors are little things under the wires
- Many layers of wires
\square Wires are as important as transistors
- Speed
- Power
- Noise
\square Alternating layers run orthogonally

Wire Geometry

- Pitch $=\mathrm{w}+\mathrm{s}$
- Aspect ratio: $\mathrm{AR}=\mathrm{t} / \mathrm{w}$
- Old processes had AR << 1
- Modern processes have AR ≈ 2
- Pack in many skinny wires

Layer Stack

\square AMI $0.6 \mu \mathrm{~m}$ process has 3 metal layers

- M1 for within-cell routing
- M2 for vertical routing between cells
- M3 for horizontal routing between cells

ㅁ Modern processes use 6-10+ metal layers

- M1: thin, narrow (<3)
- High density cells
- Mid layers
- Thicker and wider, (density vs. speed)
- Top layers: thickest
- For V_{DD}, GND, clk

Example

Intel 90 nm Stack
[Thompson02]
$1 \mu \mathrm{~m}$

Intel 45 nm Stack
[Moon08]

Interconnect Modeling

\square Current in a wire is analogous to current in a pipe

- Resistance: narrow size impedes flow
- Capacitance: trough under the leaky pipe must fill first
- Inductance: paddle wheel inertia opposes changes in flow rate
- Negligible for most wires

Lumped Element Models

\square Wires are a distributed system

- Approximate with lumped element models

- 3-segment π-model is accurate to 3% in simulation
\square L-model needs 100 segments for same accuracy!
\square Use single segment π-model for Elmore delay

Wire Resistance

■ $\rho=$ resistivity $\left(\Omega^{*} m\right)$
$R=$
$\square R_{\square}=$ sheet resistance (Ω / \square)
$-\square$ is a dimensionless unit(!)
\square Count number of squares
$-R=R_{\square}{ }^{*}$ (\# of squares)

Choice of Metals

U Until 180 nm generation, most wires were aluminum
\square Contemporary processes normally use copper

- Cu atoms diffuse into silicon and damage FETs
- Must be surrounded by a diffusion barrier

Metal	Bulk resistivity $(\mu \Omega \cdot \mathbf{c m})$
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0

Contacts Resistance

- Contacts and vias also have 2-20 Ω
\square Use many contacts for lower R
- Many small contacts for current crowding around periphery

Copper Issues

Copper wires diffusion barrier has high resistance

- Copper is also prone to dishing during polishing
- Effective resistance is higher

$$
R=\frac{\rho}{\left(t-t_{\text {dish }}-t_{\text {barrier }}\right)} \frac{l}{\left(w-2 t_{\text {barrier }}\right)}
$$

Example

- Compute the sheet resistance of a $0.22 \mu \mathrm{~m}$ thick Cu wire in a 65 nm process. Ignore dishing.

$$
R_{\mathrm{D}}=
$$

- Find the total resistance if the wire is $0.125 \mu \mathrm{~m}$ wide and 1 mm long. Ignore the barrier layer.
$R=$

Wire Capacitance

\square Wire has capacitance per unit length

- To neighbors
- To layers above and below
$\square C_{\text {total }}=C_{\text {top }}+C_{b o t}+2 C_{a d j}$

layer $n+1$
layer n
layer n-1

Capacitance Trends

\square Parallel plate equation: $\mathrm{C}=\varepsilon_{o x} \mathrm{~A} / \mathrm{d}$

- Wires are not parallel plates, but obey trends
- Increasing area (W, t) increases capacitance
- Increasing distance (s, h) decreases capacitance
\square Dielectric constant
$-\varepsilon_{0 x}=k \varepsilon_{0}$
- $\varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$
- $k=3.9$ for SiO_{2}
- Processes are starting to use low-k dielectrics
$-k \approx 3$ (or less) as dielectrics use air pockets

Capacitance Formula

- Capacitance of a line without neighbors can be approximated as

$$
C_{\text {tot }}=\varepsilon_{\text {ox }} l\left[\frac{w}{h}+0.77+1.06\left(\frac{w}{h}\right)^{0.25}+1.06\left(\frac{t}{h}\right)^{0.5}\right]
$$

This empirical formula is accurate to 6% for $A R<3.3$

M2 Capacitance Data

\square Typical dense wires have $\sim 0.2 \mathrm{fF} / \mu \mathrm{m}$

- Compare to 1-2 fF/ $\mu \mathrm{m}$ for gate capacitance

Diffusion \& Polysilicon

\square Diffusion capacitance is very high (1-2 fF/ $\mu \mathrm{m}$)

- Comparable to gate capacitance
- Diffusion also has high resistance
- Avoid using diffusion runners for wires!
\square Polysilicon has lower C but high R
- Use for transistor gates
- Occasionally for very short wires between gates

Wire RC Delay

\square Estimate the delay of a $10 x$ inverter driving a $2 x$ inverter at the end of the 1 mm wire. Assume wire capacitance is $0.2 \mathrm{fF} / \mu \mathrm{m}$ and that a unit-sized inverter has $R=10 \mathrm{~K} \Omega$ and $C=0.1 \mathrm{fF}$.
$-t_{b d}=$

Wire Energy

- Estimate the energy per unit length to send a bit of information (one rising and one falling transition) in a CMOS process.
- E =

Crosstalk

\square A capacitor does not like to change its voltage instantaneously.
\square A wire has high capacitance to its neighbor.

- When the neighbor switches from 1-> 0 or $0->1$, the wire tends to switch too.
- Called capacitive coupling or crosstalk.
\square Crosstalk effects
- Noise on nonswitching wires
- Increased delay on switching wires

Crosstalk Delay

\square Assume layers above and below on average are quiet

- Second terminal of capacitor can be ignored
- Model as $\mathrm{C}_{\mathrm{gnd}}=\mathrm{C}_{\text {top }}+\mathrm{C}_{\text {bot }}$
\square Effective $C_{a d j}$ depends on behavior of neighbors
- Miller effect

B	$\Delta \mathbf{V}$	$\mathbf{C}_{\text {eff(}(A)}$	MCF
Constant			
Switching with A		\ldots	
Switching opposite A	\ldots	\ldots	

Crosstalk Noise

\square Crosstalk causes noise on nonswitching wires
\square If victim is floating:

- model as capacitive voltage divider

$$
\Delta V_{v i c t i m}=\frac{C_{a d j}}{C_{g n d-v}+C_{a d j}} \Delta V_{a g g r e s s o r}
$$

Driven Victims

\square Usually victim is driven by a gate that fights noise

- Noise depends on relative resistances
- Victim driver is in linear region, agg. in saturation
- If sizes are same, $R_{\text {aggressor }}=2-4 \times R_{\text {victim }}$

$$
\begin{aligned}
& \Delta V_{\text {victim }}=\frac{C_{a d j}}{C_{\text {gnd }-v}+C_{a d j}} \frac{1}{1+k} \Delta V_{\text {aggressor }} \\
& k=\frac{\tau_{\text {aggressor }}}{\tau_{\text {vicitim }}}=\frac{R_{\text {aggressor }}\left(C_{g n d-a}+C_{a d j}\right)}{R_{\text {victim }}\left(C_{\text {gnd }-v}+C_{a d j}\right)}
\end{aligned}
$$

Coupling Waveforms

- Simulated coupling for $\mathrm{C}_{\text {adj }}=\mathrm{C}_{\text {victim }}$

Noise Implications

\square So what if we have noise?
\square If the noise is less than the noise margin, nothing happens
\square Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes

- But glitches cause extra delay
- Also cause extra power from false transitions
\square Dynamic logic never recovers from glitches
\square Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

G Goal: achieve delay, area, power goals with acceptable noise
\square Degrees of freedom:

Repeaters

$\square \mathrm{R}$ and C are proportional to
\square RC delay is proportional to

- Unacceptably great for long wires
\square Break long wires into N shorter segments
- Drive each one with an inverter or buffer

Repeater Design

\square How many repeaters should we use?
How large should each one be?

- Equivalent Circuit
- Wire length I/N
- Wire Capacitance $\mathrm{C}_{\mathrm{w}}{ }^{*} / / \mathrm{N}$, Resistance $\mathrm{R}_{\mathrm{w}}{ }^{*} / / \mathrm{N}$
- Inverter width W (nMOS = W, pMOS = 2W)
- Gate Capacitance C**W, Resistance R/W

Repeater Results

\square Write equation for Elmore Delay

- Differentiate with respect to W and N
- Set equal to 0 , solve

$$
\frac{l}{N}=\sqrt{\frac{2 R C^{\prime}}{R_{w} C_{w}}}
$$

$$
\frac{t_{p d}}{l}=(2+\sqrt{2}) \sqrt{R C^{\prime} R_{w} C_{w}} \quad \begin{aligned}
& \sim 40 \mathrm{ps} / \mathrm{mm} \\
& \text { in } 65 \mathrm{~nm} \text { process }
\end{aligned}
$$

$$
W=\sqrt{\frac{R C_{w}}{R_{w} C^{\prime}}}
$$

Repeater Energy

\square Energy / length $\approx 1.87 \mathrm{C}_{\mathrm{w}} \mathrm{V}_{\mathrm{DD}}{ }^{2}$

- 87\% premium over unrepeated wires
- The extra power is consumed in the large repeaters
\square If the repeaters are downsized for minimum EDP:
- Energy premium is only 30%
- Delay increases by 14% from min delay

