

Outline

- A Brief History
- CMOS Gate Design
- Pass Transistors
- CMOS Latches \& Flip-Flops
- Standard Cell Layouts
- Stick Diagrams

A Brief History

- 2010
\square 1958: First integrated circuit
- Flip-flop using two transistors
- Built by Jack Kilby at Texas Instruments

Courtesy Texas Instruments

- Intel Core i7 μ processor
- 2.3 billion transistors
- 64 Gb Flash memory
- > 16 billion transistors

Growth Rate

- 53\% compound annual growth rate over 50 years
- No other technology has grown so fast so long

D Driven by miniaturization of transistors

- Smaller is cheaper, faster, lower in power!
- Revolutionary effects on society

Annual Sales

$\square>10^{19}$ transistors manufactured in 2008

- 1 billion for every human on the planet

Invention of the Transistor

\square Vacuum tubes ruled in first half of $20^{\text {th }}$ century Large, expensive, power-hungry, unreliable
\square 1947: first point contact transistor

- John Bardeen and Walter Brattain at Bell Labs
- See Crystal Fire by Riordan, Hoddeson

Transistor Types

\square Bipolar transistors

- npn or pnp silicon structure
- Small current into very thin base layer controls large currents between emitter and collector
- Base currents limit integration density
\square Metal Oxide Semiconductor Field Effect Transistors
- nMOS and pMOS MOSFETS
- Voltage applied to insulated gate controls current between source and drain
- Low power allows very high integration

MOS Integrated Circuits

- 1970's processes usually had only nMOS transistors
- Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM

Intel Museum. Reprinted with
permission

Intel 4004 4-bit μ Proc - 1980s-present: CMOS processes for low idle power

Moore's Law: Then

1965: Gordon Moore plotted transistor on each chip

- Fit straight line on semilog scale
- Transistor counts have doubled every 26 months

Integration Levels
SSI: 10 gates
MSI: 1000 gates
LSI: 10,000 gates
VLSI: > 10k gates

And Now...

Feature Size

M Minimum feature size shrinking 30\% every 2-3 years

Corollaries

\square Many other factors grow exponentially

- Ex: clock frequency, processor performance

CMOS Gate Design

- Activity:
- Sketch a 4-input CMOS NOR gate

Complementary CMOS

- Complementary CMOS logic gates
- nMOS pull-down network
- pMOS pull-up network
- a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

```
pMOS pull-up network
```


output
\downarrow

Series and Parallel

$\square \mathrm{nMOS}: 1=\mathrm{ON}$
\square pMOS: $0=O N$
\square Series: both must be ON
\square Parallel: either can be ON

(a)
(b)

(c)

(d)

Conduction Complement

Complementary CMOS gates always produce 0 or 1

- Ex: NAND gate
- Series nMOS: $\mathrm{Y}=0$ when both inputs are 1
- Thus $\mathrm{Y}=1$ when either input is 0
- Requires parallel pMOS
- Rule of Conduction Complements

- Pull-up network is complement of pull-down
- Parallel -> series, series -> parallel

Compound Gates

- Compound gates can do any inverting function
- Ex: $Y=\overline{A \cdot B+C \cdot D}$ (AND-AND-OR-INVERT, AOI22)

(a)

(c)

(e)

Example: O3AI

$$
\text { - } Y=\overline{(A+B+C) \cdot D}
$$

Signal Strength

- Strength of signal
- How close it approximates ideal voltage source
- $V_{D D}$ and GND rails are strongest 1 and 0
- nMOS pass strong 0
- But degraded or weak 1
[pMOS pass strong 1
- But degraded or weak 0
- Thus nMOS are best for pull-down network

Pass Transistors

$\square \quad$ Transistors can be used as switches

$g=0$
$s \rightarrow O-$
d

$$
g=1
$$

$$
s_{-o} \nabla_{0-} d
$$

Input $\underset{0 \rightarrow 0}{ }=1$ Output
$0 \rightarrow$ strong 0
$\underset{1 \rightarrow 0}{\mathrm{~g}} \mathrm{a}=1$ degraded 1

Input $\mathrm{g}=0$ Output
$0 \rightarrow-$ degraded 0
$\begin{aligned} & \mathrm{g}=0 \\ & 1 \rightarrow-\end{aligned}$ strong 1

Transmission Gates

\square Pass transistors produce degraded outputs
\square Transmission gates pass both 0 and 1 well

		Input Output
9	$\begin{aligned} & g=0, g b=1 \\ & a-b \end{aligned}$	$\begin{aligned} & \mathrm{g}=1, \mathrm{gb}=0 \\ & 0 \rightarrow-\infty \text { strong } 0 \end{aligned}$
$a \underset{q}{\square} \mathrm{~b}$	$\begin{aligned} & g=1, g b=0 \\ & a \rightarrow-b \end{aligned}$	$\begin{aligned} & \mathrm{g}=1, \mathrm{gb}=0 \\ & 1 \rightarrow 0 \rightarrow \text { strong } 1 \end{aligned}$

Tristates

\square Tristate buffer produces Z when not enabled

EN	A	Y
0	0	
0	1	
1	0	
1	1	

$\overline{\mathrm{EN}}$

Nonrestoring Tristate

\square Transmission gate acts as tristate buffer

- Only two transistors
- But nonrestoring
- Noise on A is passed on to Y

Tristate Inverter

\square Tristate inverter produces restored output

- Violates conduction complement rule
- Because we want a Z output

$$
\mathrm{EN}=0
$$

Y = 'Z'

$$
E N=1
$$

$Y=\bar{A}$

Multiplexers

\square 2:1 multiplexer chooses between two inputs

S	$D 1$	$D 0$	Y
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Gate-Level Mux Design

- $Y=S D_{1}+\bar{S} D_{0}$ (too many transistors)
\square How many transistors are needed?

Transmission Gate Mux

\square Nonrestoring mux uses two transmission gates

- Only 4 transistors

Inverting Mux

\square Inverting multiplexer

- Use compound AOI22
- Or pair of tristate inverters
- Essentially the same thing
\square Noninverting multiplexer adds an inverter

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
- Two levels of 2:1 muxes
- Or four tristates

D Latch

- When CLK = 1, latch is transparent
- D flows through to Q like a buffer
\square When CLK $=0$, the latch is opaque
- Q holds its old value independent of D
\square a.k.a. transparent latch or level-sensitive latch

D Latch Design

\square Multiplexer chooses D or old Q

D Latch Operation

D Flip-flop

When CLK rises, D is copied to Q

- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

\square Built from master and slave D latches

D Flip-flop Operation

Race Condition

\square Back-to-back flops can malfunction from clock skew

- Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition

CLK1

CLK2

Q1

Q2

Nonoverlapping Clocks

\square Nonoverlapping clocks can prevent races

- As long as nonoverlap exceeds clock skew
\square We will use them in this class for safe design
- Industry manages skew more carefully instead

Gate Layout

\square Layout can be very time consuming

- Design gates to fit together nicely
- Build a library of standard cells
\square Standard cell design methodology
- V_{DD} and GND should abut (standard height)
- Adjacent gates should satisfy design rules
- nMOS at bottom and pMOS at top
- All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- Horizontal N -diffusion and p -diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32λ by 40λ

Stick Diagrams

- Stick diagrams help plan layout quickly
- Need not be to scale
- Draw with color pencils or dry-erase markers

Wiring Tracks

\square A wiring track is the space required for a wire
-4λ width, 4λ spacing from neighbor $=8 \lambda$ pitch
\square Transistors also consume one wiring track

(b)

(a)

Well spacing

\square Wells must surround transistors by 6λ

- Implies 12λ between opposite transistor flavors
- Leaves room for one wire track

(a)

(b)

Area Estimation

\square Estimate area by counting wiring tracks

- Multiply by 8 to express in λ

Example: O3AI

\square Sketch a stick diagram for O3AI and estimate area

- $Y=\overline{(A+B+C) \cdot D}$

