

Outline

\square Bubble Pushing

- Compound Gates
\square Logical Effort Example
\square Input Ordering
\square Asymmetric Gates
- Skewed Gates
\square Best P/N ratio

Example 1

```
module mux(input s, d0, d1,
                        output y);
    assign y = s ? d1 : d0;
endmodule
```

1) Sketch a design using AND, OR, and NOT gates.

Example 2

2) Sketch a design using NAND, NOR, and NOT gates. Assume $\sim S$ is available.

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
- Remember DeMorgan's Law

(b)

\square
(a)

(d)

(c)

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume \sim S is available.

Compound Gates

\square Logical Effort of compound gates

$$
Y=\bar{A} \quad Y=\overline{A \cdot B+C} \quad Y=\overline{A \cdot B+C \cdot D} \quad Y=\overline{A \cdot(B+C)+D \cdot E}
$$

unit inverter
AD

Example 4

\square The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the two designs.

Example 5

\square Annotate your designs with transistor sizes that achieve this delay.

Input Order

- Our parasitic delay model was too simple
- Calculate parasitic delay for Y falling
- If A arrives latest?
- If B arrives latest?

Inner \& Outer Inputs

- Inner input is closest to output (A)
- Outer input is closest to rail (B)
- If input arrival time is known

- Connect latest input to inner terminal

Asymmetric Gates

\square Asymmetric gates favor one input over another
\square Ex: suppose input A of a NAND gate is most critical

- Use smaller transistor on A (less capacitance)
- Boost size of noncritical input
- So total resistance is same
$\square g_{A}=$
$\square g_{B}=$
- $g_{\text {total }}=g_{A}+g_{B}=$

- Asymmetric gate approaches $g=1$ on critical input
\square But total logical effort goes up

Symmetric Gates

- Inputs can be made perfectly symmetric

Skewed Gates

\square Skewed gates favor one edge over another
\square Ex: suppose rising output of inverter is most critical

- Downsize noncritical nMOS transistor

HI-skew
inverter

unskewed inverter
(equal rise resistance)
:---:
(equal fall resista

\square Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
$-g_{u}=$
$-g_{d}=$

HI- and LO-Skew

\square Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
\square Skewed gates reduce size of noncritical transistors

- HI-skew gates favor rising output (small nMOS)
- LO-skew gates favor falling output (small pMOS)
\square Logical effort is smaller for favored direction
\square But larger for the other direction

Catalog of Skewed Gates

Asymmetric Skew

\square Combine asymmetric and skewed gates

- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input

Best P/N Ratio

\square We have selected P / N ratio for unit rise and fall resistance ($\mu=2-3$ for an inverter).
\square Alternative: choose ratio for least average delay
\square Ex: inverter

- Delay driving identical inverter
$-t_{\text {pdf }}=$
$-\mathrm{t}_{\mathrm{pdr}}=$
$-t_{p d}=$
$-\mathrm{dt}_{\mathrm{pd}} / \mathrm{dP}=$
- Least delay for $\mathrm{P}=$

P/N Ratios

In general, best P/N ratio is sqrt of equal delay ratio.

- Only improves average delay slightly for inverters
- But significantly decreases area and power

fastest
P/N ratio

Observations

\square For speed:

- NAND vs. NOR
- Many simple stages vs. fewer high fan-in stages
- Latest-arriving input
\square For area and power:
- Many simple stages vs. fewer high fan-in stages

