
Lecture 3: 
CMOS 
Transistor 
Theory



3: CMOS Transistor Theory 2CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Outline
Introduction
MOS Capacitor
nMOS I-V Characteristics
pMOS I-V Characteristics
Gate and Diffusion Capacitance



3: CMOS Transistor Theory 3CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Introduction
So far, we have treated transistors as ideal switches
An ON transistor passes a finite amount of current
– Depends on terminal voltages
– Derive current-voltage (I-V) relationships

Transistor gate, source, drain all have capacitance
– I = C (ΔV/Δt) -> Δt = (C/I) ΔV
– Capacitance and current determine speed
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MOS Capacitor
Gate and body form MOS 
capacitor
Operating modes
– Accumulation
– Depletion
– Inversion
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Terminal Voltages
Mode of operation depends on Vg, Vd, Vs

– Vgs = Vg – Vs

– Vgd = Vg – Vd

– Vds = Vd – Vs = Vgs - Vgd

Source and drain are symmetric diffusion terminals
– By convention, source is terminal at lower voltage
– Hence Vds ≥ 0

nMOS body is grounded.  First assume source is 0 too.
Three regions of operation
– Cutoff
– Linear
– Saturation
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nMOS Cutoff
No channel
Ids ≈ 0
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nMOS Linear
Channel forms
Current flows from d to s 
– e- from s to d

Ids increases with Vds

Similar to linear resistor
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nMOS Saturation
Channel pinches off
Ids independent of Vds

We say current saturates
Similar to current source
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I-V Characteristics
In Linear region, Ids depends on
– How much charge is in the channel?
– How fast is the charge moving?
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Channel Charge
MOS structure looks like parallel plate capacitor 
while operating in inversions
– Gate – oxide – channel

Qchannel = CV
C = Cg = εoxWL/tox = CoxWL
V = Vgc – Vt = (Vgs – Vds/2) – Vt
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Cox = εox / tox
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Carrier velocity
Charge is carried by e-
Electrons are propelled by the lateral electric field 
between source and drain
– E = Vds/L

Carrier velocity v proportional to lateral E-field 
– v = μE μ called mobility

Time for carrier to cross channel:
– t = L / v
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nMOS Linear I-V
Now we know
– How much charge Qchannel is in the channel
– How much time t each carrier takes to cross

channel
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nMOS Saturation I-V
If Vgd < Vt, channel pinches off near drain
– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current
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nMOS I-V Summary
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Example
We will be using a 0.6 μm process for your project
– From AMI Semiconductor
– tox = 100 Å
– μ = 350 cm2/V*s
– Vt = 0.7 V

Plot Ids vs. Vds

– Vgs = 0, 1, 2, 3, 4, 5
– Use W/L = 4/2 λ
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pMOS I-V
All dopings and voltages are inverted for pMOS
– Source is the more positive terminal

Mobility μp is determined by holes
– Typically 2-3x lower than that of electrons μn

– 120 cm2/V•s in AMI 0.6 μm process
Thus pMOS must be wider to 
provide same current
– In this class, assume 
μn / μp = 2
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Capacitance
Any two conductors separated by an insulator have 
capacitance
Gate to channel capacitor is very important
– Creates channel charge necessary for operation

Source and drain have capacitance to body
– Across reverse-biased diodes
– Called diffusion capacitance because it is 

associated with source/drain diffusion
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Gate Capacitance
Approximate channel as connected to source
Cgs = εoxWL/tox = CoxWL = CpermicronW
Cpermicron is typically about 2 fF/μm 
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Diffusion Capacitance
Csb, Cdb

Undesirable, called parasitic capacitance
Capacitance depends on area and perimeter
– Use small diffusion nodes
– Comparable to Cg

for contacted diff
– ½ Cg for uncontacted
– Varies with process


