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Outline
Comparators
Shifters
Multi-input Adders
Multipliers
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Comparators
0’s detector: A = 00…000
1’s detector: A = 11…111
Equality comparator: A = B
Magnitude comparator: A < B
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1’s & 0’s Detectors
1’s detector: N-input AND gate
0’s detector: NOTs + 1’s detector (N-input NOR)
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Equality Comparator
Check if each bit is equal (XNOR, aka equality gate)
1’s detect on bitwise equality
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Magnitude Comparator
Compute B – A and look at sign
B – A = B + ~A + 1
For unsigned numbers, carry out is sign bit
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Signed vs. Unsigned
For signed numbers, comparison is harder
– C: carry out
– Z: zero (all bits of A – B are 0)
– N: negative (MSB of result)
– V: overflow (inputs had different signs, output sign ≠ B)
– S: N xor V (sign of result)
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Shifters
Logical Shift:
– Shifts number left or right and fills with 0’s

• 1011 LSR 1 = 0101 1011 LSL1 = 0110
Arithmetic Shift:
– Shifts number left or right.  Rt shift sign extends

• 1011 ASR1 = 1101 1011 ASL1 = 0110
Rotate:
– Shifts number left or right and fills with lost bits

• 1011 ROR1 = 1101 1011 ROL1 = 0111
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Funnel Shifter
A funnel shifter can do all six types of shifts
Selects N-bit field Y from 2N–1-bit input
– Shift by k bits (0 ≤ k < N)
– Logically involves N N:1 multiplexers
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Funnel Source Generator
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Array Funnel Shifter
N N-input multiplexers
– Use 1-of-N hot select signals for shift amount
– nMOS pass transistor design (Vt drops!)
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Logarithmic Funnel Shifter
Log N stages of 2-input muxes
– No select decoding needed
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32-bit Logarithmic Funnel
Wider multiplexers reduce delay and power
Operands > 32 bits introduce datapath irregularity
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Barrel Shifter
Barrel shifters perform right rotations using wrap-
around wires.
Left rotations are right rotations by N – k = k + 1 bits.
Shifts are rotations with the end bits masked off.



18: Datapath Functional Units 15CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Logarithmic Barrel Shifter

Right shift only

Right/Left shift Right/Left Shift & Rotate
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32-bit Logarithmic Barrel
Datapath never wider than 32 bits
First stage preshifts by 1 to handle left shifts
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Multi-input Adders
Suppose we want to add k N-bit words
– Ex: 0001 + 0111 + 1101 + 0010 = 10111

Straightforward solution: k-1 N-input CPAs
– Large and slow
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Carry Save Addition
A full adder sums 3 inputs and produces 2 outputs
– Carry output has twice weight of sum output

N full adders in parallel are called carry save adder
– Produce N sums and N carry outs
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CSA Application
Use k-2 stages of CSAs
– Keep result in carry-save redundant form

Final CPA computes actual result
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Multiplication
Example:

M x N-bit multiplication
– Produce N M-bit partial products
– Sum these to produce M+N-bit product

    1100 : 1210
    0101 : 510
    1100
   0000
  1100
 0000
00111100 : 6010

multiplier
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products

product
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General Form
Multiplicand: Y = (yM-1, yM-2, …, y1, y0)
Multiplier: X = (xN-1, xN-2, …, x1, x0)

Product:
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Dot Diagram
Each dot represents a bit

partial products
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Array Multiplier
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Rectangular Array
Squash array to fit rectangular floorplan

y0y1y2y3

x0

x1

x2

x3

p0

p1

p2

p3

p4p5p6p7



18: Datapath Functional Units 25CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Fewer Partial Products
Array multiplier requires N partial products
If we looked at groups of r bits, we could form N/r 
partial products.
– Faster and smaller?
– Called radix-2r encoding

Ex: r = 2: look at pairs of bits
– Form partial products of 0, Y, 2Y, 3Y
– First three are easy, but 3Y requires adder 



18: Datapath Functional Units 26CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Booth Encoding
Instead of 3Y, try –Y, then increment next partial 
product to add 4Y
Similarly, for 2Y, try –2Y + 4Y in next partial product
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Booth Hardware
Booth encoder generates control lines for each PP
– Booth selectors choose PP bits
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Sign Extension
Partial products can be negative
– Require sign extension, which is cumbersome
– High fanout on most significant bit
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Simplified Sign Ext.
Sign bits are either all 0’s or all 1’s
– Note that all 0’s is all 1’s + 1 in proper column
– Use this to reduce loading on MSB
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Even Simpler Sign Ext.
No need to add all the 1’s in hardware
– Precompute the answer!
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Advanced Multiplication
Signed vs. unsigned inputs
Higher radix Booth encoding
Array vs. tree CSA networks


