
Lecture 18:
Datapath
Functional
Units

18: Datapath Functional Units 2CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Outline
Comparators
Shifters
Multi-input Adders
Multipliers

18: Datapath Functional Units 3CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Comparators
0’s detector: A = 00…000
1’s detector: A = 11…111
Equality comparator: A = B
Magnitude comparator: A < B

18: Datapath Functional Units 4CMOS VLSI DesignCMOS VLSI Design 4th Ed.

1’s & 0’s Detectors
1’s detector: N-input AND gate
0’s detector: NOTs + 1’s detector (N-input NOR)

A0

A1

A2

A3

A4

A5

A6

A7

allones

A0

A1

A2

A3

allzeros

allones

A1

A2

A3

A4

A5

A6

A7

A0

18: Datapath Functional Units 5CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Equality Comparator
Check if each bit is equal (XNOR, aka equality gate)
1’s detect on bitwise equality

A[0]
B[0]

A = B

A[1]
B[1]

A[2]
B[2]

A[3]
B[3]

18: Datapath Functional Units 6CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Magnitude Comparator
Compute B – A and look at sign
B – A = B + ~A + 1
For unsigned numbers, carry out is sign bit

A0

B0

A1

B1

A2

B2

A3

B3

A = BZ

C

A B≤

N A B≥

18: Datapath Functional Units 7CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Signed vs. Unsigned
For signed numbers, comparison is harder
– C: carry out
– Z: zero (all bits of A – B are 0)
– N: negative (MSB of result)
– V: overflow (inputs had different signs, output sign ≠ B)
– S: N xor V (sign of result)

18: Datapath Functional Units 8CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Shifters
Logical Shift:
– Shifts number left or right and fills with 0’s

• 1011 LSR 1 = 0101 1011 LSL1 = 0110
Arithmetic Shift:
– Shifts number left or right. Rt shift sign extends

• 1011 ASR1 = 1101 1011 ASL1 = 0110
Rotate:
– Shifts number left or right and fills with lost bits

• 1011 ROR1 = 1101 1011 ROL1 = 0111

18: Datapath Functional Units 9CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Funnel Shifter
A funnel shifter can do all six types of shifts
Selects N-bit field Y from 2N–1-bit input
– Shift by k bits (0 ≤ k < N)
– Logically involves N N:1 multiplexers

18: Datapath Functional Units 10CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Funnel Source Generator

Rotate Right
Logical Right
Arithmetic Right

Rotate Left
Logical/Arithmetic Left

18: Datapath Functional Units 11CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Array Funnel Shifter
N N-input multiplexers
– Use 1-of-N hot select signals for shift amount
– nMOS pass transistor design (Vt drops!)

k[1:0]

s0s1s2s3
Y3

Y2

Y1

Y0

Z0Z1Z2Z3Z4

Z5

Z6

left Inverters & Decoder

18: Datapath Functional Units 12CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Logarithmic Funnel Shifter
Log N stages of 2-input muxes
– No select decoding needed

18: Datapath Functional Units 13CMOS VLSI DesignCMOS VLSI Design 4th Ed.

32-bit Logarithmic Funnel
Wider multiplexers reduce delay and power
Operands > 32 bits introduce datapath irregularity

18: Datapath Functional Units 14CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Barrel Shifter
Barrel shifters perform right rotations using wrap-
around wires.
Left rotations are right rotations by N – k = k + 1 bits.
Shifts are rotations with the end bits masked off.

18: Datapath Functional Units 15CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Logarithmic Barrel Shifter

Right shift only

Right/Left shift Right/Left Shift & Rotate

18: Datapath Functional Units 16CMOS VLSI DesignCMOS VLSI Design 4th Ed.

32-bit Logarithmic Barrel
Datapath never wider than 32 bits
First stage preshifts by 1 to handle left shifts

18: Datapath Functional Units 17CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Multi-input Adders
Suppose we want to add k N-bit words
– Ex: 0001 + 0111 + 1101 + 0010 = 10111

Straightforward solution: k-1 N-input CPAs
– Large and slow

+

+

0001 0111

+

1101 0010

10101

10111

1000

18: Datapath Functional Units 18CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Carry Save Addition
A full adder sums 3 inputs and produces 2 outputs
– Carry output has twice weight of sum output

N full adders in parallel are called carry save adder
– Produce N sums and N carry outs

Z4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA

18: Datapath Functional Units 19CMOS VLSI DesignCMOS VLSI Design 4th Ed.

CSA Application
Use k-2 stages of CSAs
– Keep result in carry-save redundant form

Final CPA computes actual result

4-bit CSA

5-bit CSA

0001 0111 1101 0010

+

10110101_

01010_ 00011

 0001
 0111
+1101
 1011
0101_

X
Y
Z
S
C

 0101_
 1011
 +0010
 00011
01010_

X
Y
Z
S
C

 01010_
+ 00011
 10111

A
B
S

10111

18: Datapath Functional Units 20CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Multiplication
Example:

M x N-bit multiplication
– Produce N M-bit partial products
– Sum these to produce M+N-bit product

 1100 : 1210
 0101 : 510
 1100
 0000
 1100
 0000
00111100 : 6010

multiplier
multiplicand

partial
products

product

18: Datapath Functional Units 21CMOS VLSI DesignCMOS VLSI Design 4th Ed.

General Form
Multiplicand: Y = (yM-1, yM-2, …, y1, y0)
Multiplier: X = (xN-1, xN-2, …, x1, x0)

Product:
1 1 1 1

0 0 0 0

2 2 2
M N N M

j i i j
j i i j

j i i j

P y x x y
− − − −

+

= = = =

⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ∑∑

x0y5 x0y4 x0y3 x0y2 x0y1 x0y0

y5 y4 y3 y2 y1 y0

x5 x4 x3 x2 x1 x0

x1y5 x1y4 x1y3 x1y2 x1y1 x1y0

x2y5 x2y4 x2y3 x2y2 x2y1 x2y0

x3y5 x3y4 x3y3 x3y2 x3y1 x3y0

x4y5 x4y4 x4y3 x4y2 x4y1 x4y0

x5y5 x5y4 x5y3 x5y2 x5y1 x5y0

p0p1p2p3p4p5p6p7p8p9p10p11

multiplier
multiplicand

partial
products

product

18: Datapath Functional Units 22CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Dot Diagram
Each dot represents a bit

partial products

m
ultiplier x

x0

x15

18: Datapath Functional Units 23CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Array Multiplier
y0y1y2y3

x0

x1

x2

x3

p0p1p2p3p4p5p6p7

B

ASin Cin

SoutCout

BA

CinCout

Sout

Sin

=

CSA
Array

CPA

critical path BA

Sout

Cout CinCout

Sout

=Cin

BA

18: Datapath Functional Units 24CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Rectangular Array
Squash array to fit rectangular floorplan

y0y1y2y3

x0

x1

x2

x3

p0

p1

p2

p3

p4p5p6p7

18: Datapath Functional Units 25CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Fewer Partial Products
Array multiplier requires N partial products
If we looked at groups of r bits, we could form N/r
partial products.
– Faster and smaller?
– Called radix-2r encoding

Ex: r = 2: look at pairs of bits
– Form partial products of 0, Y, 2Y, 3Y
– First three are easy, but 3Y requires adder

18: Datapath Functional Units 26CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Booth Encoding
Instead of 3Y, try –Y, then increment next partial
product to add 4Y
Similarly, for 2Y, try –2Y + 4Y in next partial product

18: Datapath Functional Units 27CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Booth Hardware
Booth encoder generates control lines for each PP
– Booth selectors choose PP bits

18: Datapath Functional Units 28CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Sign Extension
Partial products can be negative
– Require sign extension, which is cumbersome
– High fanout on most significant bit

m
ultiplier x

x0

x15

0

0
0

x-1

x16
x17

s
sssssssssssssss

s
sssssssssssss

s
sssssssssss

s
sssssssss

s
sssssss

s
sssss

s
sss

s
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

18: Datapath Functional Units 29CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Simplified Sign Ext.
Sign bits are either all 0’s or all 1’s
– Note that all 0’s is all 1’s + 1 in proper column
– Use this to reduce loading on MSB

s
111111111111111
s

s
1111111111111
s

s
11111111111
s

s
111111111
s

s
1111111
s

s
11111
s

s
111
s

s
1
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

18: Datapath Functional Units 30CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Even Simpler Sign Ext.
No need to add all the 1’s in hardware
– Precompute the answer!

s
sss

s
s1

s
s1

s
s1

s
s1

s
s1

s
s1

s
s

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8

18: Datapath Functional Units 31CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Advanced Multiplication
Signed vs. unsigned inputs
Higher radix Booth encoding
Array vs. tree CSA networks

