
1

CMOS VLSI Design
Lab 4: Full Chip Assembly

In this final lab, you will assemble and simulate your entire MIPS microprocessor! You will
build your top level chip cell by connecting the datapath, aludec, and controller_synth to
a padframe cell containing the I/O pads. chip will have the same inputs, outputs, and
function as the top level mips module.

The tiny transistors on a chip must eventually be attached to the external world with a
padframe. A padframe consists of metal pads about 100 microns square; these pads are
large enough to be attached to the package during manufacturing with thin gold bonding
wires. Each pad also contains large transistors to drive the relatively enormous capacitances
of the external environment.

You will first put together a schematic for the chip and simulate it to ensure the design is
correct. You will then use the Virtuoso chip assembly router to automatically wire the chip
layout according to your schematic. Finally, you will verify the layout and generate a GDS
file suitable for manufacturing.

I. chip Schematic

Create a new schematic for a cell called chip in your mips8 library. Place symbols for
the datapath and for aludec and controller_synth from your controller_xxlibrary,
and wire the connections between these cells. It is good practice to place labels on the
wires between the cells so that you will have an easier time debugging if problems arise. If
your aludec doesn’t need bits 5:4, you’ll have to tap bits 3:0 off of the bus.

The mips8 library contains a 40-pin padframe using pads from the UofU_Pads library.
Look at the padframe schematic and layout. If you were to build a chip with a different
pinout, you would need to modify the padframe to put the proper types of pads (pad_in,
pad_out, pad_vdd, or pad_gnd) in the desired positions.

The top-level inputs and outputs are listed in Table 1. Place a symbol for the padframe.
Create pins for these inputs and outputs and connect them to the top of the padframe. Wire
the _core signals from the bottom of the padframe to the blocks within the chip. Again,
name these internal wires. Check and save.

Inputs Outputs
ph1 adr<7:0>
ph2 writedata<7:0>
Reset memread

2

memdata<7:0> memwrite

Table 1: MIPS Processor Inputs & Outputs

Simulate the chip with NC-Verilog. Generate a netlist in chip_run1. To simulate it
using the same test bench as in Lab 2, you will need the external memory, the testbench,
and the memfile.dat. Copy the testbench and memfile.dat to the run directory:

cp /courses/e158/15/lab2/mips.sv ~/IC_CAD/cadence/chip_run1
cp /courses/e158/15/lab2/memfile.dat ~/IC_CAD/cadence/chip_run1

Open mips.sv in a text editor. Comment out all the modules from mips through the
end, keeping only testbench and exmemory. Then look at the testbench module. It
instantiates the mips processor as the device under test. You need to replace it with the
netlisted schematic. Look at the verilog.inpfiles file and find where chip was netlisted
(e.g. ihnl/cds54/netlist). In the testbench, comment out the mips instantiation and
add a new instantiation of the chip using the ports in the proper order given in the chip
netlist. For example:

//mips #(WIDTH,REGBITS) dut(.*);
chip c(adr, memread, memwrite, writedata, memdata, ph1, ph2, reset);

As in lab 2, invoke the simulation with the following command:

sim-nc mips.sv –f verilog.inpfiles

and look for a “Simulation completed successfully” message. If the simulation doesn’t
terminate within a few seconds, it probably has an error and will never meet the
completion condition. If the simulation is unsuccessful, fire up sim-ncg, add some
interesting waveforms, and systematically diagnose the problem. You may find it helpful
to compare against the known good waveforms from Lab 2. The most likely places for
mistakes are in your routing between modules in chip.

II. chip Layout

In this step, you will use the Virtuoso Chip Assembly Router (VCAR) to autoroute the
chip layout based on the connections specified in the schematic.

Open the chip schematic. Choose Launch • Layout XL. Click OK to create a new chip
layout cellview.

In the new layout window, choose Connectivity • Generate • All From Source… In
the Layout Generation Options window, set the I/O pin default layer to metal2 and the
width and height to 1.2 (microns). Click Apply to apply these defaults to all the pins.
Uncheck the create box for vdd! and gnd! (in the Specify Pins to be Generated). In Pin
Label click Create Label as Label. Then navigate to the PR Boundary tab. The chip will be
1500 microns on a side. Under Area Estimation, change from Utilization to Width and set
the width to 1600 (microns) to leave some slop around the edges. Then choose OK.

3

You’ll see a purple place & route boundary box in the layout window, along with the four
cells scattered outside the box. If you zoom in near the origin, you’ll also see the pins for
all the chip ports. Set the display options so that you can see the contents of the cells.

Move the padframe inside the place & route boundary. All of the pads should be within
the boundary, though the labels with the pin numbers will extend outside. Then move the
other three cells (datapath, controller_syn, and aludec) inside the padframe and arrange
them with the datapath below the other two. Place them far enough apart that the router
will be able to run wires between the cells.

Find all of the pins (near the origin) and delete them all.

The router doesn’t handle power and ground connections. The connections need to be
beefy to handle the current drawn from the supply. Use some fat wires (e.g. 9.9 microns)
and plenty of vias to manually connect power and ground. Pin 40 is gnd! and pin 39 is
vdd! in the padframe. These should connect to the power/ground rings of the datapath
and controller_syn using beefy wires and plenty of vias. Use some regular wires (e.g. 8
λ) to connect the aludec supplies because this module is fairly small. Be sure not to mix
up power and ground! Save a backup copy of this version in case your subsequent
routing fails and you need to try again.

Next, you will autoroute the signals. Choose Routing • Export to Router… Check the
Use Rules File and set it to /courses/e158/15/lab4/icc.rul. The router will take a
moment to start. It will over your terminal window and report some status.

To configure some more routing rules, choose File • Execute Do File…in the VCAR
window and enter /courses/e158/15/lab4/do.do. The contents of the .do file are
printed in the console.

Choose Autoroute • Global Route • Local Layer Direction. Click to get the Layer
Direction from Layer Panel. This sets up routing with metal2 vertical and metals 1 and 3
horizontal. Next, choose Autoroute • Global Route • Global Router… The router will
plan the approximate path for each wire. Ignore a possible warning that this is not a chip
assembly application. Next, choose Autoroute • Detail Route • Detail Router. The detailed
router does the routing. Check that it completes all of the connections (indicating 0
Unroutes). Make sure that you see wires connecting each of the cells within the core and
also wire connecting the core to the pads. Choose Autoroute • Clean… to improve the
routing. Finally, choose Autoroute • Post Route • Remove Notches to fix any notches left
by the router.

Chose File • Write • Session and click OK. Then quit the router. The chip layout should
be automatically updated with the new routes. If it isn’t, use Routing • Import from
Router… to import the session back into the layout.

4

Run DRC and LVS on the chip. Make sure you do NOT join nets with the same name; this
could hide a missing wire in the chip. The router occasionally introduces minor DRC
problems that you may need to fix by hand.

III. Tapeout

The final step in designing a chip is creating a file containing the geometry needed by the
vendor to manufacture masks. Once upon a time these files were written to magnetic tape,
and the process is still known as tapeout. Before taping out, run the checks mentioned
above.

The two popular output formats are CIF (historically significant and human readable) and
GDS (a binary format used in commercial designs today); we will use GDS (the Graphic
Data System format).

To write a GDS file, choose File • Export • Stream… in the Virtuoso window. Enter
your library name (mips8), top cell name (chip), and view name (layout). Set the output
file to chip.gds. Click on User-Defined Data and enter
/proj/ncsu/rel/pipo/stream4gds.map as the Layer Map table. Hit translate and view
the log. (Look at this file and see how it maps the Cadence layers to 3-letter GDS layer
names). Check for and resolve any errors. You may ignore the warnings about the layer
map containing unknown layers such as metal4 that aren’t actually used in our process.
There should be no labels or ellipses in the PIPO.log.

Verify that the GDS file is valid by reading it back in to a new library. Create a new
library named mips8_gdsin. Be sure to attach the UofU Technology library. Choose
File • Import • Stream in the Virtuoso window. Set chip.gds as the input file and chip
as the top cell. Specify the new library (mips8_gdsin) so that you don’t overwrite your
chip. Attach UofU_TechLib_ami06. Then hit more options, layers and load the map file
from /proj/ncsu/rel/pipo/stream4gds.map You may ignore warnings about being
unable to open the technology file. You can also ignore a fatal error about a loop in the
hierarchy.

Run DRC on the imported layout. You should see 144 DRC errors related to optional rule
10.4 about spacing from the pad to unrelated metal. (You do not get these errors on the
original padframe because it was marked with a special “nodrc” layer.) You might also
get a small number of errors about improperly formed shapes. If you do, use Verify •
Markers • Find to walk through the errors until you find the bad shape and make sure it is
not important. For example, there might be an improperly shaped piece of metal 2
overlapping an existing metal2 square for a contact; the bad portion can be ignored
because of the overlap.

5

Extract the chip layout from mips8_gdsin and run LVS to compare it against the chip
schematic from mips8. The netlists should match although there will be no pins in the
layout. Fix any problems.

This completes the lab. You now know how to create layouts and schematics. You know
how to draw leaf cells, then build up custom datapaths and synthesized control logic
blocks. You know how to verify the design using DRC, LVS, and simulation. And you
know how to put the design into a padframe and run final checks before manufacturing.
May you build many interesting chips!

V. What to Turn In

Please provide a hard copy of each of the following items:

1. Please indicate how many hours you spent on this lab. This will not affect
your grade, but will be helpful for calibrating the workload for the future.

2. A printout of the chip schematic.
3. Does the chip schematic simulate correctly?
4. Does the chip layout pass DRC? LVS?
5. A printout of the chip layout.
6. Does the imported GDS pass DRC? LVS?

Modified by Avi Thaker, Austin Fikes and David Money Harris, to support Virtuoso 6.1.5
and auto-routing on February 7, 2015.

