
 
The controller for your MIPS processor is responsible for generating the signals to the datapath 
to fetch and execute each instruction. It lacks the regular structure of the datapath. In the first 
section of the lab, you will design the ALU decoder control logic by hand. You will discover 
how this becomes tedious and error-prone even for small designs. For larger blocks, especially 
designs that might require bug fixes late in the design process, hand place and route becomes 
exceedingly onerous. Therefore, you will use Synopsis’s Design Compiler to synthesize the 
combinational logic for the control FSM and Cadence’s SOC Encounter to automatically place 
and route the controller. 

I. ALUDec Logic 

The aludec logic is responsible for decoding a 2-bit ALUOp signal and a 6-bit funct field of the 
instruction to produce three multiplexer control lines for the ALU. Two of the signals select 
which type of ALU operation is performed and the third determines if input B is inverted. 

The function of the aludec logic is defined in Chapter 1 of CMOS VLSI Design. The Verilog 
code in Figure 1 is an equivalent description of the logic. Note that the main controller will never 
produce an aluop of 11, so that case need not be considered. The processor only handles the five 
R-type instructions listed, so you can treat the result of other funct codes as don’t cares and 
optimize your logic accordingly. 

typedef enum logic [5:0] {ADD = 6'b100000, 
       SUB = 6'b100010, 
       AND = 6'b100100, 
       OR = 6'b100101, 
       SLT = 6'b101010} functcode; 
 
module aludec(input logic [1:0] aluop, 
     input logic [5:0] funct, 
       output logic [2:0] alucontrol); 
  always_comb 
    case (aluop) 
  2'b00: alucontrol = 3'b010; // add for lb/sb/addi 
  2'b01: alucontrol = 3'b110; // subtract (for beq) 
  default: case(funct) // R-Type instructions 
       ADD: alucontrol = 3'b010; 
       SUB: alucontrol = 3'b110; 
       AND: alucontrol = 3'b000; 
       OR: alucontrol = 3'b001; 
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      SLT: alucontrol = 3'b111; 
       default: alucontrol = 3'b101; // should never happen 
      endcase 
  endcase 
endmodule 

Figure 1: System Verilog code for ALUDec module 

Create a new library named controller_xx. Create an aludec schematic in your 
controller_xx library. Using the logic gates from muddlib11, design a combinational 
circuit to compute the alucontrol[2:0] signals from aluop[1:0] and funct[5:0]. Limit yourself to 
the inv, nand2, nand3, nor2, and nor3 gates so that you gain experience designing with 
inverting gates. As funct[5:4] are always 10 for any instruction under consideration, you may 
omit them as don’t cares. Try to minimize the number of gates required because that will save 
you time and space in the layout. Remember to name your busses with angle brackets (e.g. 
aluop<1:0>). 

You will need to connect individual bits to your input and output busses. Draw the busses with a 
wide wire and connect a pin with the appropriate name. Then draw narrow wires from the bus to 
individual logic gates. Add a label for each of these wires with its name (e.g. aluop<0>).  

Make a symbol for your aludec. 

Next, create an aludec layout. Remember to use metal2 vertically and metal3 horizontally. 
When you are done, provide pins for vdd!, gnd!, the eight inputs and the three outputs.  

Run DRC and LVS and fix any problems you might find. 

II. Controller Verilog 

The MIPS controller is responsible for decoding the instruction and generating mux select and 
register enable signals for the datapath. In our multicycle MIPS design, it is implemented as a 
finite state machine, as shown in Figure 3.1 The Verilog code describing this FSM is the 
statelogic and outputlogic modules in the RTL mips.sv that you worked with in Lab 2. 

Look through the Verilog and identify the major portions. The top level module is called 
controller. It calls the aludec, which you just designed, and a controller_synth module that you 
are about to synthesize. The controller_synth module, in turn, has separate modules for the next 
state logic and the output logic of the FSM. The next state logic describes the state transitions of 
the FSM. The output logic determines which outputs will be asserted in each state. Note that the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  This FSM is identical to that of the multicycle processors in Patterson & Hennessy Computer Organization and 
Design and in Harris and Harris Digital Design and Computer Architecture, save that LW and SW have been 
replaced by LB and SB and instruction fetch now requires four cycles to load instructions through a byte-wide 
interface.	  



Verilog also contains the AND/OR gates required to compute pcen, the write enable to the 
program counter. 

 

Figure 2: Controller FSM 

III. Controller Synthesis 

In this section, you will use Synopsys Design Compiler to synthesize the controller_synth 
module into a gate-level netlist. Design Compiler is the industry-standard logic synthesis tool. 

Create a new directory named synth in your IC_CAD directory. Design Compiler requires a 
configuration file in the directory where you will run. Copy it over using 

cp /courses/e158/15/lab3/.synopsys_dc.setup ~/IC_CAD/synth 

Look over the file to see how it defines some configuration for the Design Compiler. 



Design Compiler can be driven at the command line, but it is easier to place all of the commands 
in a script. Copy a generic synthesis script from the class directory 

cp /courses/e158/15/lab3/syndc.tcl ~/IC_CAD/synth 

Look over the script. It is written in TCL (tool control language), with extensions that Design 
Compiler understands. Near the beginning of the file, it sets “myFiles” to mips.sv and the 
basename (the module you want to synthesize) to controller_synth. If you were synthesizing 
something else, you would need to change these lines. 

Copy your mips.sv file from lab2 into the synth directory. While in the synth directory, 
invoke synthesis using the command 

syn-dc –f syndc.tcl 

You’ll get a bunch of messages that may scroll off the screen. It may be easier to pipe them to 
more so you get one screenful at a time: 

syn-dc –f syndc.tcl | more 

The first time that you run, Design Compiler will analyze the muddlib.db file to determine 
which cells are available in the cell library. Subsequent runs in the same directory will be much 
faster after this analysis is complete. 

Check the report carefully. You should get many warnings in the first 100 lines of mips.sv 
because the testbench contains nonsynthesizable commands such as initial blocks, assertions, 
and $finish. You’ll also get warnings about driving cell attributes that you may ignore. You’ll 
also notice that certain unused bits are optimized out of the instruction register. Get a sense of 
what a good report looks like so you can recognize a bad one. 

Inspect the output files named controller_synth_syn.v, .rep, .pow, and .sdc. 
The .v file is the structural netlist produced by synthesis. The .rep file is the synthesis report, 
including a summary of the critical path timing and the area. The .pow file has a power report. 
The .sdc file contains timing constraints.  

IV. Controller Place & Route with SOC Encounter 

Now, you can import the synthesized design back into the Cadence tools and place & route it 
into a layout using SOC Encounter. (SOC stands for System-On-Chip.) 

Make another directory in IC_CAD called soc for your SOC Encounter runs. Then make a 
subdirectory within soc (e.g. lab3_xx) for this particular run. Change into this new run 
directory. 



You’ll need copies of your structural netlist and timing constraints files from synthesis. The best 
way to do this is to create a symbolic link so that if you change your synthesis results, the new 
netlist is automatically visible: 

ln –s ~/IC_CAD/synth/controller_synth_syn.v . 
ln –s ~/IC_CAD/synth/controller_synth_syn.sdc . 

You’ll also need links to muddlib.lib and muddlib.lef. muddlib.db is the Synopsys 
library file containing timing information about the cells used by synthesis. muddlib.lef is a 
Library Exchange Format file containing physical information about the cell sizes and pin 
locations. 

ln –s /courses/e158/15/lab3/muddlib.lib . 
ln –s /courses/e158/15/lab3/muddlib.lef . 

Invoke SOC Encounter at the command line by typing cad-soc. (Note that Encounter needs 
your terminal window and will crash if you try to run it in the background.) Encounter can also 
be driven with a GUI or with a script. In this lab, we’ll use the GUI because there aren’t too 
many commands to enter and you’ll be able to see what is going on. 

Invoke File • Import Design. Enter controller_synth_syn.v for your Verilog netlist and 
controller_synth as the top-level cell. Enter  muddlib.lef as the LEF file. Then, click on the 
Advanced tab. Click on Power and enter VDD as the Power Net and VSS as the Ground Net. 
Remember to capitalize, else you will get failures. 

Watch for errors in the console. You can ignore the max_capacitance attribute warnings if they 
appear. Encounter’s internal state is easily corrupted when there are errors. If you get errors 
along the way, it is better to start over from scratch by reinvoking cad-soc rather than 
attempting to redo the command. 

Choose Floorplan • Specify Floorplan. Set margins of 30 (microns) from the core to the left, 
right, top, and bottom sides to give room for a power ring later on. You’ll see a window with 
some rows for standard cells and some space around the edge. You can leave 0 spacing between 
pairs of rows for now. If you were building a more complex design and had trouble with 
insufficient space for routing, you might wish to increase the row spacing under the Advanced 
tab.  

File • Save Design … and save the design as controller_synth_floorplan.enc. 
Encounter doesn’t allow Undo, so if you goof a later step, you’ll be able to revert to this step. In 
general, save often with different file names corresponding to the steps you are at so that you can 
revert to the last good place. If you need to reload a saved design, choose File • Restore Design 
….  



Invoke Power • Power Planning • Add Rings… to add the power rings around the cells. Set the 
width of the top, bottom, left, and right rings to 9.9 (microns) and the spacing to 1.8 to provide 
fat wires that can carry plenty of current to the design. Click Center in channel at the Offset 
option to center the rings in the margin around the rows of cells. You’ll see the power rings 
appear in the Encounter window. 

Invoke Route • Special Route… to route power and ground to each row, and press OK. Notice 
that Encounter automatically flips cells between rows and overlaps the power and ground wires 
to save space. You may wish to save again now.  

Invoke Place • Standard Cells…. Turn off all optimization because you don’t want Encounter to 
modify your design (which would cause LVS errors later). Click OK to place the cells in the 
design. It will appear that nothing happened. On the right end of the second row of the toolbar, 
click on the Physical View icon that looks like a transistor. This will bring you to a new view in 
which you can see the gates placed in the rows. Check the console window and look for errors. 
Ignore warnings about the scan chain because you don’t have one. Encounter has a degree of 
randomness in cell placement and occasionally fails to place the cells. If you have an error, 
restore the last saved version and try again. If all is good, save again. 

Invoke Route • Nanoroute • Route… and click OK to route the design. Check the console to 
verify that the number of fails is 0 and the number of DRC violations is 0. Again, if it fails, 
restore and try again. Notice how the cells are routed together and connect to pins scattered 
randomly around the periphery.  

Invoke Place • Physical Cells • Add Filler… to add filler cells so there is a continuous nwell even 
where there are no logic gates. Click select, then choose fill_1_wide and click Add. You’ll see 
the gaps (mostly) filled up.  

Invoke Verify • Verify Geometry… to do a basic design rule check. Make sure there are no 
violations. 

Invoke Verify • Verify Connectivity… to ensure the design is really connected in the way that 
the structural netlist specified. Make sure there are no violations. 

You are now done with place & route. Save once more. Then choose Design • Save • DEF to 
save the output in Design Exchange Format that the Virtuoso Layout Editor will be able to read 
back in. Change to DEF version 5.5 and click OK. Close Encounter. 

V. Import the Synthesized and Placed Controller 

The next step is to import the schematic and layout for the controller back into the Cadence tools. 

In Virtuoso, create a new library called lab3_xx and attach the technology file used in previous 
labs (UofU AMI 0.60u).   



In the Virtuoso window, choose File • Import • Verilog. Set the Target Library Name to 
lab3_xx. Set reference libraries to muddlib11 basic.  Set the Verilog Files to Import to 
~/IC_CAD/synth/controller_synth_syn.v. You’ll see warnings about Verilog 
definitions for modules not being found. These are ok because the tool uses muddlib11 cells. 
Open the controller_synth schematic. You should be able to identify the eight latches and a rat’s 
nest of gates that make you thankful the FSM was synthesized rather than designed by hand. 

In the icfb window, choose File • Import • DEF. Enter your library (e.g. lab3_xx), 
controller_synth for the cell, and layout for the view. Click Use and enter muddlib11 as the 
reference library to indicate where the standard cells are taken from. Enter 
~/IC_CAD/soc/lab3_xx/controller_synth.def for the DEF file. In the icfb 
window, you should have warnings about failing to open the techfile.cds or the controller_synth 
layout and viagen layouts and finding the master core. Watch for other errors. 

In the Library Manager, open the controller_synth layout that you just imported. The design 
will initially open in “Preview” mode without the usual set of menus. Choose Tools • Layout to 
return to your familiar layout model. 

All of the cells are imported as “abstract” views with just port information but no real layout. 
You’ll need to use find & replace to change these to “layout” views.  

Choose Tools • Find/Replace, search for inst. Then select viewname and search for “abstract” 
and replace all with “layout” and be sure to save the file.  Zoom in and inspect the layout that 
was just produced. Run DRC and LVS. There should be no errors. 

VI. What to Turn In 

Please provide a hard copy of each of the following items: 

1. Please indicate how many hours you spent on this lab. This will not affect your grade, but 
will be helpful for calibrating the workload for the future. 

2. A printout of the aludec schematics and layout. 
3. A printout of the controller_synth schematics and layout. 
4. What are the DRC and LVS status of aludec and controller_synth? 

Modified by Avi Thaker, Austin Fikes, and David Money Harris to support cadence EDI 2/2/2015.  


