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Outline
Nonideal Transistor Behavior
– High Field Effects

• Mobility Degradation
• Velocity Saturation

– Channel Length Modulation
– Threshold Voltage Effects

• Body Effect
• Drain-Induced Barrier Lowering
• Short Channel Effect

– Leakage
• Subthreshold Leakage
• Gate Leakage
• Junction Leakage

Process and Environmental Variations
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Ideal Transistor I-V
Shockley long-channel transistor models
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Ideal vs. Simulated nMOS I-V Plot

65 nm IBM process, VDD = 1.0 V
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ON and OFF Current
Ion = Ids @ Vgs = Vds = VDD 

– Saturation

Ioff = Ids @ Vgs = 0, Vds = VDD

– Cutoff
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Electric Fields Effects
Vertical electric field: Evert = Vgs / tox

– Attracts carriers into channel
– Long channel: Qchannel ∝ Evert

Lateral electric field: Elat = Vds / L
– Accelerates carriers from drain to source
– Long channel: v = μElat
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Coffee Cart Analogy
Tired student runs from VLSI lab to coffee cart
Freshmen are pouring out of the physics lecture hall
Vds is how long you have been up
– Your velocity = fatigue × mobility

Vgs is a wind blowing you against the glass (SiO2) wall
At high Vgs, you are buffeted against the wall
– Mobility degradation

At high Vds, you scatter off freshmen, fall down, get up
– Velocity saturation

• Don’t confuse this with the saturation region
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Mobility Degradation
High Evert effectively reduces mobility
– Collisions with oxide interface
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Velocity Saturation
At high Elat, carrier velocity rolls off
– Carriers scatter off atoms in silicon lattice
– Velocity reaches vsat

• Electrons: 107 cm/s
• Holes: 8 x 106 cm/s

– Better model
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Vel Sat I-V Effects
Ideal transistor ON current increases with VDD

2

Velocity-saturated ON current increases with VDD

Real transistors are partially velocity saturated
– Approximate with α-power law model
– Ids ∝ VDD

α

– 1 < α < 2 determined empirically (≈ 1.3 for 65 nm)
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α-Power Model
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Channel Length Modulation
Reverse-biased p-n junctions form a depletion region
– Region between n and p with no carriers
– Width of depletion Ld region grows with reverse bias
– Leff = L – Ld

Shorter Leff gives more current
– Ids increases with Vds

– Even in saturation
n
+

p

GateSource Drain

bulk Si

n
+

VDDGND VDD

GND

L
Leff

Depletion Region
Width: Ld



4: Nonideal Transistor Theory 13CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Chan Length Mod I-V

λ = channel length modulation coefficient
– not feature size
– Empirically fit to I-V characteristics
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Threshold Voltage Effects
Vt is Vgs for which the channel starts to invert
Ideal models assumed Vt is constant
Really depends (weakly) on almost everything else:
– Body voltage: Body Effect
– Drain voltage: Drain-Induced Barrier Lowering
– Channel length: Short Channel Effect
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Body Effect
Body is a fourth transistor terminal
Vsb affects the charge required to invert the channel
– Increasing Vs or decreasing Vb increases Vt

φs = surface potential at threshold

– Depends on doping level NA

– And intrinsic carrier concentration ni

γ = body effect coefficient
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Body Effect Cont.

For small source-to-body voltage, treat as linear
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DIBL
Electric field from drain affects channel
More pronounced in small transistors where the 
drain is closer to the channel
Drain-Induced Barrier Lowering
– Drain voltage also affect Vt

High drain voltage causes current to increase.

ttdsVVVη

t t dsV V Vη′ = −
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Short Channel Effect
In small transistors, source/drain depletion regions 
extend into the channel
– Impacts the amount of charge required to invert 

the channel
– And thus makes Vt a function of channel length

Short channel effect: Vt increases with L
– Some processes exhibit a reverse short channel 

effect in which Vt decreases with L
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Leakage
What about current in cutoff?
Simulated results
What differs?
– Current doesn’t

go to 0 in cutoff
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Leakage Sources
Subthreshold conduction
– Transistors can’t abruptly turn ON or OFF
– Dominant source in contemporary transistors

Gate leakage
– Tunneling through ultrathin gate dielectric

Junction leakage
– Reverse-biased PN junction diode current
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Subthreshold Leakage
Subthreshold leakage exponential with Vgs

n is process dependent
– typically 1.3-1.7

Rewrite relative to Ioff on log scale

S ≈ 100 mV/decade @ room temperature
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Gate Leakage
Carriers tunnel thorough very thin gate oxides
Exponentially sensitive to tox and VDD

– A and B are tech constants
– Greater for electrons

• So nMOS gates leak more
Negligible for older processes (tox > 20 Å)
Critically important at 65 nm and below (tox ≈ 10.5 Å)

From [Song01]
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Junction Leakage
Reverse-biased p-n junctions have some leakage
– Ordinary diode leakage
– Band-to-band tunneling (BTBT)
– Gate-induced drain leakage (GIDL)
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Diode Leakage
Reverse-biased p-n junctions have some leakage

At any significant negative diode voltage, ID = -Is
Is depends on doping levels
– And area and perimeter of diffusion regions
– Typically < 1 fA/μm2 (negligible)
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Band-to-Band Tunneling
Tunneling across heavily doped p-n junctions
– Especially sidewall between drain & channel

when halo doping is used to increase Vt

Increases junction leakage to significant levels

– Xj: sidewall junction depth
– Eg: bandgap voltage
– A, B: tech constants



4: Nonideal Transistor Theory 26CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Gate-Induced Drain Leakage
Occurs at overlap between gate and drain
– Most pronounced when drain is at VDD, gate is at 

a negative voltage
– Thwarts efforts to reduce subthreshold leakage 

using a negative gate voltage
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Temperature Sensitivity
Increasing temperature
– Reduces mobility
– Reduces Vt

ION decreases with temperature
IOFF increases with temperature

Vgs

dsI

increasing
temperature
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So What?
So what if transistors are not ideal?
– They still behave like switches.

But these effects matter for…
– Supply voltage choice
– Logical effort
– Quiescent power consumption
– Pass transistors
– Temperature of operation
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Parameter Variation
Transistors have uncertainty in parameters
– Process: Leff, Vt, tox of nMOS and pMOS
– Vary around typical (T) values

Fast (F)
– Leff: short
– Vt:  low
– tox:  thin

Slow (S): opposite
Not all parameters are independent
for nMOS and pMOS
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Environmental Variation
VDD and T also vary in time and space
Fast:
– VDD: high
– T:     low

70 C1.8T
125 C1.62S

0 C1.98F
TemperatureVoltageCorner
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Process Corners
Process corners describe worst case variations
– If a design works in all corners, it will probably 

work for any variation.
Describe corner with four letters (T, F, S)
– nMOS speed
– pMOS speed
– Voltage
– Temperature
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Important Corners
Some critical simulation corners include

SFFFSubthreshold
leakage

FFFFPower

SSSSCycle time

TempVDDpMOSnMOSPurpose


