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Introduction
Chips are mostly made of wires called interconnect
– In stick diagram, wires set size
– Transistors are little things under the wires
– Many layers of wires

Wires are as important as transistors
– Speed
– Power
– Noise

Alternating layers run orthogonally
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Wire Geometry
Pitch = w + s
Aspect ratio: AR = t/w
– Old processes had AR << 1
– Modern processes have AR ≈ 2

• Pack in many skinny wires
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Layer Stack
AMI 0.6 μm process has 3 metal layers
– M1 for within-cell routing
– M2 for vertical routing between cells
– M3 for horizontal routing between cells

Modern processes use 6-10+ metal layers
– M1: thin, narrow (< 3λ)

• High density cells
– Mid layers

• Thicker and wider, (density vs. speed)
– Top layers: thickest

• For VDD, GND, clk



14: Wires 6CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Example

Intel 90 nm Stack Intel 45 nm Stack
[Thompson02] [Moon08]
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Interconnect Modeling
Current in a wire is analogous to current in a pipe
– Resistance: narrow size impedes flow
– Capacitance: trough under the leaky pipe must fill first 
– Inductance: paddle wheel inertia opposes changes in flow rate

• Negligible for most
wires
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Lumped Element Models
Wires are a distributed system
– Approximate with lumped element models

3-segment π-model is accurate to 3% in simulation
L-model needs 100 segments for same accuracy!
Use single segment π-model for Elmore delay
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Wire Resistance
ρ = resistivity (Ω*m)

R = sheet resistance (Ω/ )
– is a dimensionless unit(!)

Count number of squares
– R = R * (# of squares)
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Choice of Metals
Until 180 nm generation, most wires were aluminum
Contemporary processes normally use copper
– Cu atoms diffuse into silicon and damage FETs
– Must be surrounded by a diffusion barrier

43.0Titanium (Ti)
5.3Tungsten (W)
2.8Aluminum (Al)
2.2Gold (Au)
1.7Copper (Cu)
1.6Silver (Ag)
Bulk resistivity (μΩ • cm)Metal
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Contacts Resistance
Contacts and vias also have 2-20 Ω
Use many contacts for lower R
– Many small contacts for current crowding around 

periphery
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Copper Issues
Copper wires diffusion barrier has high resistance
Copper is also prone to dishing during polishing
Effective resistance is higher

( ) ( )dish barrier barrier2
lR

t t t w t
ρ

=
− − −
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Example

Compute the sheet resistance of a 0.22 μm thick Cu 
wire in a 65 nm process.  Ignore dishing.

Find the total resistance if the wire is 0.125 μm wide 
and 1 mm long.  Ignore the barrier layer.
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Wire Capacitance
Wire has capacitance per unit length
– To neighbors
– To layers above and below

Ctotal = Ctop + Cbot + 2Cadj

layer n+1

layer n

layer n-1
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Ctop
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Capacitance Trends
Parallel plate equation:  C = εoxA/d
– Wires are not parallel plates, but obey trends
– Increasing area (W, t) increases capacitance
– Increasing distance (s, h) decreases capacitance

Dielectric constant
– εox = kε0

• ε0 = 8.85 x 10-14 F/cm
• k = 3.9 for SiO2

Processes are starting to use low-k dielectrics
– k ≈ 3 (or less) as dielectrics use air pockets
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Capacitance Formula
Capacitance of a line without neighbors can be 
approximated as

This empirical formula is accurate to 6% for AR < 3.3

0.25 0.5

ox 0.77 1.06 1.06tot
w w tC l
h h h

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
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M2 Capacitance Data
Typical dense wires have ~ 0.2 fF/μm
– Compare to 1-2 fF/μm for gate capacitance
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Diffusion & Polysilicon
Diffusion capacitance is very high (1-2 fF/μm)
– Comparable to gate capacitance
– Diffusion also has high resistance
– Avoid using diffusion runners for wires!

Polysilicon has lower C but high R
– Use for transistor gates
– Occasionally for very short wires between gates
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Wire RC Delay
Estimate the delay of a 10x inverter driving a 2x 
inverter at the end of the 1 mm wire.  Assume wire 
capacitance is 0.2 fF/μm and that a unit-sized 
inverter has R = 10 KΩ and C = 0.1 fF. 

– tpd = (1000 Ω)(100 fF) + (1000 + 800 Ω)(100 + 0.6 fF) = 281 ps
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Wire Energy
Estimate the energy per unit length to send a bit of 
information (one rising and one falling transition) in a 
CMOS process.

E = (0.2 pF/mm)(1.0 V)2 = 0.2 pJ/bit/mm
= 0.2 mW/Gbps



14: Wires 21CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Crosstalk
A capacitor does not like to change its voltage 
instantaneously.
A wire has high capacitance to its neighbor.
– When the neighbor switches from 1-> 0 or 0->1, 

the wire tends to switch too.
– Called capacitive coupling or crosstalk.

Crosstalk effects
– Noise on nonswitching wires
– Increased delay on switching wires
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Crosstalk Delay
Assume layers above and below on average are quiet
– Second terminal of capacitor can be ignored
– Model as Cgnd = Ctop + Cbot

Effective Cadj depends on behavior of neighbors
– Miller effect A B

CadjCgnd Cgnd

2Cgnd + 2 Cadj2VDDSwitching opposite A
0Cgnd0Switching with A
1Cgnd + CadjVDDConstant
MCFCeff(A)ΔVB
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Crosstalk Noise
Crosstalk causes noise on nonswitching wires
If victim is floating:
– model as capacitive voltage divider

Cadj

Cgnd-v
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Victim

ΔVaggressor

ΔVvictim

adj
victim aggressor

gnd v adj
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Δ = Δ
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Driven Victims
Usually victim is driven by a gate that fights noise
– Noise depends on relative resistances
– Victim driver is in linear region, agg. in saturation
– If sizes are same, Raggressor = 2-4 x Rvictim
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Coupling Waveforms
Simulated coupling for Cadj = Cvictim
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Noise Implications
So what if we have noise?
If the noise is less than the noise margin, nothing 
happens
Static CMOS logic will eventually settle to correct 
output even if disturbed by large noise spikes
– But glitches cause extra delay
– Also cause extra power from false transitions

Dynamic logic never recovers from glitches
Memories and other sensitive circuits also can 
produce the wrong answer
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Wire Engineering
Goal: achieve delay, area, power goals with 
acceptable noise
Degrees of freedom:
– Width 
– Spacing
– Layer
– Shielding
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Repeaters
R and C are proportional to l
RC delay is proportional to l2

– Unacceptably great for long wires
Break long wires into N shorter segments
– Drive each one with an inverter or buffer

Wire Length: l

Driver Receiver

l/N

Driver

Segment

Repeater

l/N

Repeater

l/N

ReceiverRepeater

N Segments
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Repeater Design
How many repeaters should we use?
How large should each one be?
Equivalent Circuit
– Wire length l/N

• Wire Capacitance Cw*l/N, Resistance Rw*l/N
– Inverter width W (nMOS = W, pMOS = 2W)

• Gate Capacitance C’*W, Resistance R/W

R/W C'WCwl/2N Cwl/2N

RwlN
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Repeater Results
Write equation for Elmore Delay
– Differentiate with respect to W and N
– Set equal to 0, solve

2

w w

l RC
N R C

′
=

( )2 2pd
w w

t
RC R C

l
′= +

w

w

RCW
R C

=
′

~40 ps/mm

in 65 nm process
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Repeater Energy
Energy / length ≈ 1.87CwVDD

2

– 87% premium over unrepeated wires
– The extra power is consumed in the large 

repeaters
If the repeaters are downsized for minimum EDP:
– Energy premium is only 30%
– Delay increases by 14% from min delay


