

Lecture 12: Design for Testability

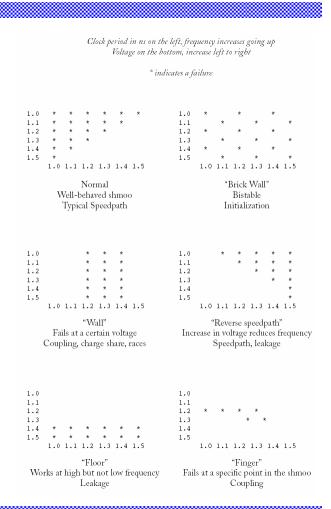
Outline

- □ Testing
 - Logic Verification
 - Silicon Debug
 - Manufacturing Test
- □ Fault Models
- Observability and Controllability
- Design for Test
 - Scan
 - BIST
- Boundary Scan

Testing

- ☐ Testing is one of the most expensive parts of chips
 - Logic verification accounts for > 50% of design effort for many chips
 - Debug time after fabrication has enormous opportunity cost
 - Shipping defective parts can sink a company
- ☐ Example: Intel FDIV bug (1994)
 - Logic error not caught until > 1M units shipped
 - Recall cost \$450M (!!!)

Logic Verification


- Does the chip simulate correctly?
 - Usually done at HDL level
 - Verification engineers write test bench for HDL
 - Can't test all cases
 - Look for corner cases
 - Try to break logic design
- ☐ Ex: 32-bit adder
 - Test all combinations of corner cases as inputs:
 - 0, 1, 2, 2³¹-1, -1, -2³¹, a few random numbers
- Good tests require ingenuity

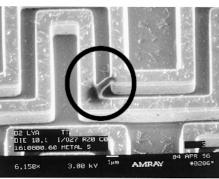
Silicon Debug

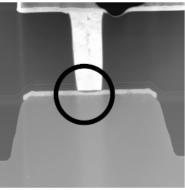
- ☐ Test the first chips back from fabrication
 - If you are lucky, they work the first time
 - If not...
- ☐ Logic bugs vs. electrical failures
 - Most chip failures are logic bugs from inadequate simulation
 - Some are electrical failures
 - Crosstalk
 - Dynamic nodes: leakage, charge sharing
 - Ratio failures
 - A few are tool or methodology failures (e.g. DRC)
- ☐ Fix the bugs and fabricate a corrected chip

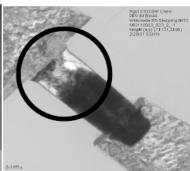
Shmoo Plots

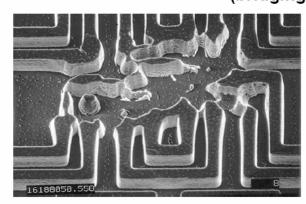
- ☐ How to diagnose failures?
 - Hard to access chips
 - Picoprobes
 - Electron beam
 - Laser voltage probing
 - Built-in self-test
- □ Shmoo plots
 - Vary voltage, frequency
 - Look for cause of electrical failures

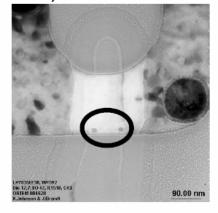
Manufacturing Test

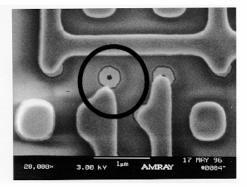

- ☐ A speck of dust on a wafer is sufficient to kill chip
- ☐ *Yield* of any chip is < 100%
 - Must test chips after manufacturing before delivery to customers to only ship good parts
- Manufacturing testers are very expensive
 - Minimize time on tester
 - Careful selection of test vectors


Manufacturing Failures


Metal 1 Shelving

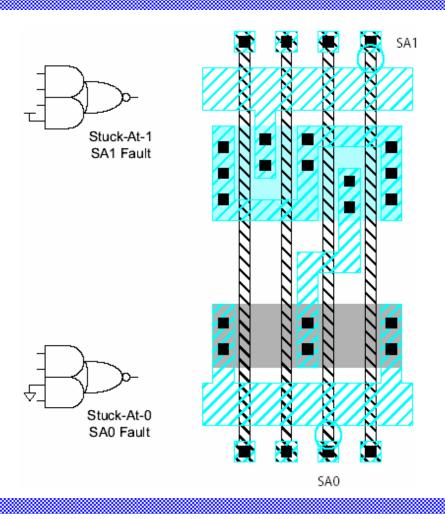

Metal 5 film particle (bridging defect)


Open defect


Spongy Via2 (Infant mortality)

Metal 5 blocked etch (patterning defect)

Spot defects "Co" Defect under Gate


Metal 1 missing pattern (open at contact)

SEM images courtesy Intel Corporation

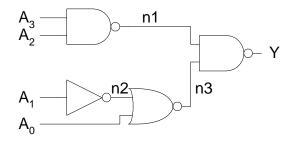
Stuck-At Faults

- ☐ How does a chip fail?
 - Usually failures are shorts between two conductors or opens in a conductor
 - This can cause very complicated behavior
- ☐ A simpler model: Stuck-At
 - Assume all failures cause nodes to be "stuck-at"
 0 or 1, i.e. shorted to GND or V_{DD}
 - Not quite true, but works well in practice

Examples

Observability & Controllability

- Observability: ease of observing a node by watching external output pins of the chip
- Controllability: ease of forcing a node to 0 or 1 by driving input pins of the chip
- Combinational logic is usually easy to observe and control
- ☐ Finite state machines can be very difficult, requiring many cycles to enter desired state
 - Especially if state transition diagram is not known to the test engineer


Test Pattern Generation

- Manufacturing test ideally would check every node in the circuit to prove it is not stuck.
- Apply the smallest sequence of test vectors necessary to prove each node is not stuck.
- □ Good observability and controllability reduces number of test vectors required for manufacturing test.
 - Reduces the cost of testing
 - Motivates design-for-test

Test Example

SA1

SA0

 \Box A_3

 \Box A_2

 \Box A_1

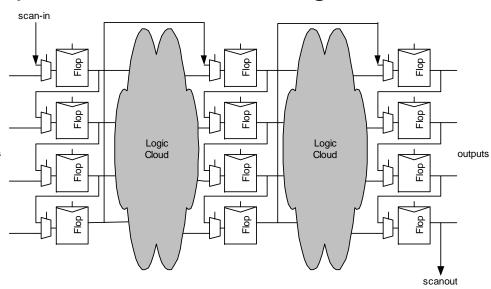
 \Box A_0

□ n1

□ n2

□ n3

☐ Y


☐ Minimum set:

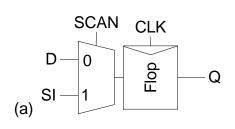
Design for Test

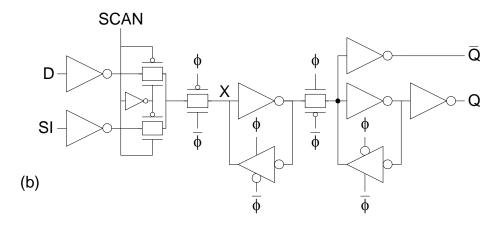
- Design the chip to increase observability and controllability
- □ If each register could be observed and controlled, test problem reduces to testing combinational logic between registers.
- □ Better yet, logic blocks could enter test mode where they generate test patterns and report the results automatically.

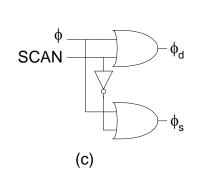
Scan

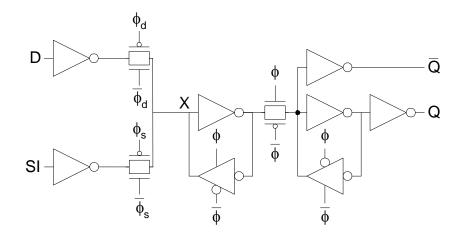
- ☐ Convert each flip-flop to a scan register
 - Only costs one extra multiplexer
- Normal mode: flip-flops behave as usual
- ☐ Scan mode: flip-flops behave as shift register
- Contents of flops can be scanned out and new values scanned in

CLK


Flop

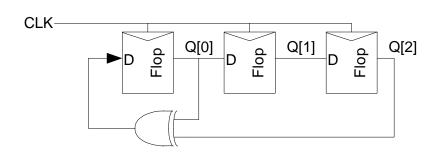

Q


SCAN


SI

Scannable Flip-flops

ATPG

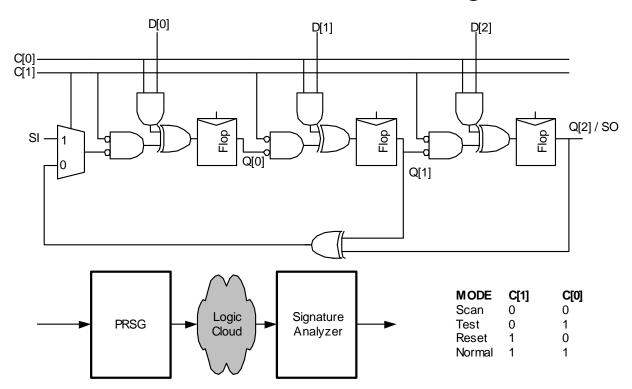

- ☐ Test pattern generation is tedious
- □ Automatic Test Pattern Generation (ATPG) tools produce a good set of vectors for each block of combinational logic
- Scan chains are used to control and observe the blocks
- □ Complete coverage requires a large number of vectors, raising the cost of test
- Most products settle for covering 90+% of potential stuck-at faults

Built-in Self-test

- Built-in self-test lets blocks test themselves
 - Generate pseudo-random inputs to comb. logic
 - Combine outputs into a syndrome
 - With high probability, block is fault-free if it produces the expected syndrome

PRSG

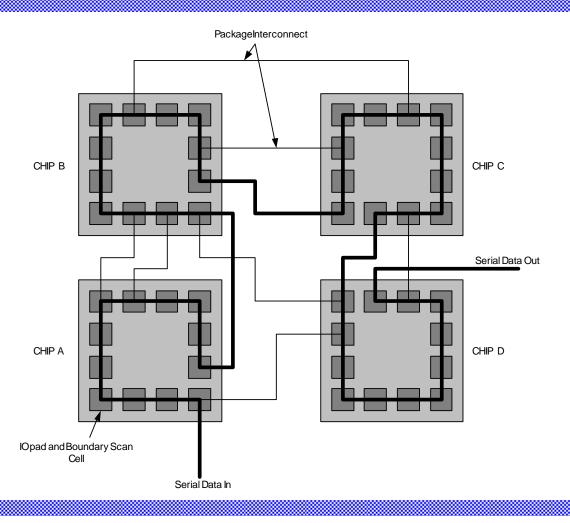
- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator



Flops reset to 000

Step	Q
0	
1	
2	
3	
4	
5	
6	-
7	

BILBO


- □ Built-in Logic Block Observer
 - Combine scan with PRSG & signature analysis

Boundary Scan

- ☐ Testing boards is also difficult
 - Need to verify solder joints are good
 - Drive a pin to 0, then to 1
 - Check that all connected pins get the values
- □ Through-hold boards used "bed of nails"
- □ SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

Boundary Scan Example

Boundary Scan Interface

Boundary scan is accessed through five pins

– TCK: test clock

– TMS: test mode select

– TDI: test data in

– TDO: test data out

– TRST*: test reset (optional)

Chips with internal scan chains can access the chains through boundary scan for unified test strategy.

Testing Your Class Project

- Presilicon Verification
 - Test vectors: corner cases and random vectors
 - HDL simulation of schematics for functionality
 - Use 2-phase clocking to avoid races
 - Use static CMOS gates to avoid electrical failures
 - Use LVS to ensure layout matches schematic
 - Don't worry about timing
- □ Postsilicon Verification
 - Run your test vectors on the fabricated chip
 - Use a functional chip tester
 - Potentially use breadboard or PCB for full system

TestosterICs

- □ TestosterICs functional chip tester
 - Designed by clinic teams and David Diaz at HMC
 - Reads your test vectors, applies them to your chip, and reports assertion failures

Summary

- Think about testing from the beginning
 - Simulate as you go
 - Plan for test after fabrication
- ☐ "If you don't test it, it won't work! (Guaranteed)"