
The Game of Nim

Tim Nguyen

Andrew Xue

E158: CMOS VLSI Design

Prof. David Money Harris

April 17, 2010

INTRODUCTION

Nim is a strategy game in which two players take turns removing items from
three different stacks. The object of the game is to remove the last item from the last
stack. The most interesting aspect of the game of Nim is that it has a mathematical
solution; a player can guarantee that he will win by following a specific formula to
determine each move.

This report documents the design process for a microchip that allows a human to
play a game of Nim against an AI player that uses the mathematical solution to
calculate each of its moves. The chip was designed to fit in a 1.5 mm by 1.5 mm 40-pin

MOSIS “TinyChip” fabricated in a 0.6-m process.

SPECIFICATIONS

 Excluding the pins set aside for power and ground, the chip had a total of 12
inputs and outputs:

Name Width Direction Description

ph1 1 Input Two-phase clock

ph2 1 Input Two-phase clock

reset 1 Input Starts a new game

turn_enable 1 Input Chip will only process user input when
this is asserted

stack_choice_in 3 Input Stack from which items will be removed

num_remove_in 4 Input Number of items to be removed

invalid 1 Output Indicates whether or not user input was a
valid move

human_winner 1 Output Indicates that the human player won

ai_winner 1 Output Indicates that the AI won

a_out 4 Output Size of stack A

b_out 4 Output Size of stack B

c_out 4 Output Size of stack C

During the human turn, the system will not update the stacks unless the human

input (num_remove_in) is nonzero, and less than or equal to the chosen stack size. It
also must wait for an enable signal in order to register a human move. If the number
removed is greater than the number of items in the chosen stack, or if an invalid stack is
chosen, invalid will be enabled.

During the AI turn, the system will take the flop sizes and determine the best
course of action using the following algorithm:

Let A, B, and C represent the number of beads in each stack.
= XOR

A  B  C = X | The bitwise XOR of A, B, and C (called the nim-sum)

A  X = A’ | The bitwise XOR of A, B, and C with the nim-sum

B  X = B’
C  X = C’
A’ < A  remove (A-A’) from A | If A’ is less than A, reduce the size of A to A’.
B’ < B  remove (B-B’) from A | Check A first, and if that inequality fails, check B
C’ < C  remove (C-C’) from A | and then C.

The key to the winning theory to the game is the binary sums of the heap sizes.

The AI performs the bitwise XOR of A, B, and C. this is called the nim-sum. Next, it
performs three more bitwise XORs between nim-sum and each of the stacks. If it is
possible to reduce one of the stacks to the result of its bitwise XOR with the nim-sum,
then the new nim-sum is zero, which ensures an AI victory. If the nim-sum is already
zero before the AI can make its move, then it will remove one item from the first non-
zero stack in order to prolong the game.

FLOORPLAN

Our original floorplan called for a 650x480 controller and a 1500x440 datapath,
but both components were significantly larger in the final design. The finalized

datapath was measured to be 856x1801 and the controller was measured to be

1222x982.
The datapath turned out to be taller than expected due to modifications in

design. In the proposal, we assumed the datapath would have a height of four bits and
a zipper, but the finalized datapath had a height of twelve bits with three zippers in
order to separate hardware specific to each stack.

The controller also turned out to be much larger than expected. This, however,
was due to the relocation of the AI and the human logic from the datapath to the
controller. The reasoning behind this was that the human and the AI logic were
prohibitively time-consuming and overtly complicated to draw schematics and layouts
for them.

Figure 1: A comparison of the proposed and finalized controller and datapath

The slice plan for the datapath consisted of three four-bit sections stacked on top

of each other, resulting in a total height of twelve bits and three zippers. This
configuration was chosen because the same hardware was used for each of the three
stacks. On the left was the stack memory, which consisted of an array of multiplexers
feeding into the inputs of four-bit flip-flops. The outputs of the flip-flops were sent to
the controller, which determined the next move, and the make_move cell, which sent
updated values to the flip-flops. The check_winner cell on the right takes in the new
stack values and performs a four-bit nor to determine whether or not all of the stacks
are empty. If so, then the game is over and the datapath sends a high winner signal to
the controller, which triggers the controller’s winner logic and determines which player
won the game.

Figure 2: A slice plan of the datapath

VERIFICATION

- Does the Verilog pass testbench? Yes*
- Do schematics pass testbench? Yes*
- Does the layout pass DRC and LVS? Yes
- Does CIF load correctly and pass DRC and LVS? Yes

Discrepancies:
- The Verilog and the schematics do not fully pass the testbench (there is one error
out of the 17 checks), but this error arises from the way test vectors are read into the
system. Otherwise the system passes the testbench and simulates correctly.

POSTFABRICATION TEST PLAN

If the chip were fabricated, a board would need to be built around it. The input
signals would be wired to switches or buttons to indicate low/high values. The outputs
would be wired to LEDs in order to indicate values. A function generator would have
to apply a two-phase clock input to the system in order for it to function correctly. The
same test vectors could be applied to ensure consistency and functionality.

DESIGN TIME

The following table contains a list of how much time was spent on each stage of
the design process. All of the time was spent with both designers working together, so
the total number of man-hours spent on each stage can be found by multiplying the
provided number by two.

Stage
Time
Spent
(hours)

Project Proposal 3

Verilog 16

Schematics 16

Layout 20

Final Report 5
Total 60

FILE LOCATIONS

All of the files for this project are saved on the chips server in the Parsons VLSI Lab at
Harvey Mudd College. The specific files for each stage of the design process can be
found in the following directories:

Files Path and Filename

Verilog Code /home/zxue/IC_CAD/cadence/proj2/nim_verilog.sv

Test Vectors /home/zxue/IC_CAD/cadence/proj2/nim_testvectors.tv

Synthesis Results /home/tnguyen/IC_CAD/synth/proj2_1/

All Cadence Directories /home/zxue/IC_CAD/cadence/proj2/

CIF /home/zxue/IC_CAD/cadence/proj2_cifin/

PDF Chip Plot /home/zxue/IC_CAD/cadence/proj2/nim_chip_plot.pdf

PDF of this Report /home/zxue/IC_CAD/cadence/proj2/finalreport.pdf

APPENDICES

Appendix 1: Verilog Code

`timescale 1ns / 100ps

module testbench();

 logic ph1, ph2;
 logic reset;

 logic turn_enable;
 logic [2:0] stack_choice_in;
 logic [3:0] num_remove_in;
 logic invalid, human_winner, ai_winner;
 logic [3:0] a_out, b_out, c_out;
 logic invalid_exp, human_winner_exp, ai_winner_exp;
 logic [3:0] a_exp, b_exp, c_exp;

 logic [31:0] vectornum, errors;

 logic [29:0] testvectors[1000:0];

 // instantiate device to be tested
 core sexycore(ph1, ph2, reset, turn_enable,
 stack_choice_in, num_remove_in,
 invalid, human_winner, ai_winner,
 a_out, b_out, c_out);

/*
 // The following should be used when testing the chip.
 chip testcore(a_out, ai_winner, b_out, c_out, human_winner, invalid,
 num_remove_in, ph1, ph2, reset, stack_choice_in, turn_enable);

*/

 // initialize test and load vectors
 initial begin
 reset <= 1; # 84; reset <= 0;

// where to dump the results
 $dumpfile("nim_core_test.vcd");

 // dump the variables
 $dumpvars(1, ph1, ph2, invalid, human_winner, ai_winner, a_out, b_out, c_out);

// load test vectors
 $readmemb("nim_testvectors.tv", testvectors);

 vectornum = 0; errors = 0;
 end

 // generate clock to sequence tests
 always
 begin
 ph1 <= 0; ph2 <= 0; #8;
 ph1 <= 1; #12;
 ph1 <= 0; #8;
 ph2 <= 1; #12;
 end

 always @(posedge ph2)

 if (!reset) begin // skip during reset

 if ((a_out !== a_exp) || (b_out !== b_exp) || (c_out !== c_exp)) begin

 $display("Error: turn_enable = %h, stack_choice_in = %h, num_remove_in = %h,",

turn_enable, stack_choice_in, num_remove_in);
 $display("invalid = %h, human_winner = %h, ai_winner = %h,",

invalid, human_winner, ai_winner);
 $display("(a,b,c) = (%h, %h, %h)",

a_out, b_out, c_out);
 $display("expected invalid = %h, human_winner = %h, ai_winner = %h,",

invalid_exp, human_winner_exp, ai_winner_exp);
 $display("expected (a,b,c) = (%h, %h, %h)\n",

a_exp, b_exp, c_exp);
 errors = errors + 1;

 end
 else begin

$display("Error-free move: (a,b,c) = (%h, %h, %h)\n",
a_out, b_out, c_out);

 end

 vectornum = vectornum + 1;

 if (testvectors[vectornum] === 30'bx) begin

 $display("%d tests completed with %d errors",

 vectornum, errors);

 $dumpflush;

 $finish;

 end

#2; {turn_enable, stack_choice_in, num_remove_in,
invalid_exp, human_winner_exp, ai_winner_exp,

 a_exp, b_exp, c_exp} = testvectors[vectornum];

 end
endmodule

// Top level
module core(
 input logic ph1, ph2, reset, turn_enable,
 input logic [2:0] stack_choice_in,
 input logic [3:0] num_remove_in,
 output logic invalid, human_winner, ai_winner,
 output logic [3:0] a_out, b_out, c_out);

 // Wire connections not otherwise defined

// (just things passed from controller to datapath and vice versa)
 logic a_enable, b_enable, c_enable, winner;
 logic [2:0] stack_choice;
 logic [3:0] num_remove_out;

 // Instantiate controller in core level

controller nim_controller(reset, ph1, ph2, turn_enable, winner, a_out, b_out, c_out,
stack_choice_in, num_remove_in, stack_choice, num_remove_out,
a_enable, b_enable, c_enable,

 human_winner, ai_winner, invalid);

 // Instantiate datapath in core level
 datapath nim_datapath(ph1, ph2, reset, a_enable, b_enable, c_enable, stack_choice,
 num_remove_out, winner, a_out, b_out, c_out);

endmodule

// Simple controller to enable and control turn changes
module controller(

 input reset, ph1, ph2,
 input logic turn_enable, winner,
 input logic [3:0] a_out, b_out, c_out,
 input logic [2:0] stack_choice_in,
 input logic [3:0] num_remove_in,
 output logic [2:0] stack_choice_out,
 output logic [3:0] num_remove_out,
 output logic a_enable, b_enable, c_enable,
 output logic human_win, ai_win, invalid);

 // Simple truth table logic to control turn processes

 // Define non-input wires
 logic turn, zero, not_validity, validity, turn_en, turn_old;
 logic [2:0] stack_choice_nim, stack_choice_human;
 logic [3:0] stack_out_nim, stack_out_human;

 // Store turn somewhere...
 flopenr #(1) turn_flop(ph1, ph2, reset, turn_en, turn_old, turn);

 always @ (*) begin
 if(reset == 1) begin // if reset is asserted,
 a_enable = 1; // enable all three flip-flops
 b_enable = 1; // (the datapath will send their initial values)
 c_enable = 1;
 turn_en = 0; // and make the AI go first
 end
 else if (invalid == 1) begin // If invalid, turn stays the same
 a_enable = 0; // and make sure all the flip-flops are disabled
 b_enable = 0;
 c_enable = 0;
 turn_en = 0;
 end
 else begin // If not invalid and reset is not asserted,
 a_enable = stack_choice_out[0]; // enable the correct flip-flop
 b_enable = stack_choice_out[1];
 c_enable = stack_choice_out[2];
 turn_en = 1; // and change turn
 end
 turn_old = ~turn;
 end
 always @ (*) begin
 if (winner == 1) begin // if there was a winner...
 human_win = turn; // if turn = 1, then human wins (human_win = 1)
 ai_win = ~turn; // if turn = 0, then AI wins (ai_win = 1)
 end
 else begin // if there was no winner, then neither side wins
 human_win = 0;
 ai_win = 0;
 end
 end

 // ai or human logic pathways
 nim_logic l_nim(a_out,b_out,c_out,stack_choice_nim,stack_out_nim);

 human_logic l_human(turn_enable,stack_choice_in,num_remove_in,
 a_out,b_out,c_out,stack_choice_human,stack_out_human,validity);

 // set invalid output
 assign zero = 0;
 assign not_validity = ~validity;
 mux2 #(1) valid_mux(zero, not_validity, turn, invalid);

 // choose between human or ai turn inputs
 mux2 #(3) stack_choice_mux(stack_choice_nim, stack_choice_human, turn, stack_choice_out);
 mux2 stack_out_mux(stack_out_nim, stack_out_human, turn, num_remove_out);
endmodule

// Datapath handles turn logic and winner logic
module datapath(
 input logic ph1, ph2, reset,
 input logic a_enable, b_enable, c_enable,
 input logic [2:0] stack_choice,
 input logic [3:0] stack_out,
 output logic winner,
 output logic [3:0] a_ct_out, b_ct_out, c_ct_out,
 output logic [3:0] a_out, b_out, c_out);

 logic [3:0] a_in, b_in, c_in;
 logic [3:0] a_pass, b_pass, c_pass;
 logic [3:0] a_default, b_default, c_default;

 // initial values for the three stacks
 assign a_default = 4'b0011;
 assign b_default = 4'b0100;
 assign c_default = 4'b0101;

 // reset muxes
 mux2 resetmux_a(a_out, a_default, reset, a_pass);
 mux2 resetmux_b(b_out, b_default, reset, b_pass);
 mux2 resetmux_c(c_out, c_default, reset, c_pass);

 // flippy flops
 flopen stacka(ph1, ph2, a_enable, a_pass, a_ct_out);
 flopen stackb(ph1, ph2, b_enable, b_pass, b_ct_out);
 flopen stackc(ph1, ph2, c_enable, c_pass, c_ct_out);

 // make the move, update, and check for winners!
 make_move gen_move(stack_choice, stack_out, a_ct_out, b_ct_out, c_ct_out, a_out, b_out, c_out);
 check_winner chk_winner(reset, a_out, b_out, c_out, winner);

endmodule

// After legality is covered, update values
module make_move(
 input logic [2:0] stack_choice,
 input logic [3:0] stack_out,
 input logic [3:0] stacka, stackb, stackc,
 output logic [3:0] a_new, b_new, c_new);

 // sets the chosen stack to the new value
 always @(*) begin
 case(stack_choice)
 3'b001: begin a_new = stack_out; b_new = stackb; c_new = stackc; end
 3'b010: begin a_new = stacka; b_new = stack_out; c_new = stackc; end
 3'b100: begin a_new = stacka; b_new = stackb; c_new = stack_out; end
 default: begin a_new = stacka; b_new = stackb; c_new = stackc; end
 endcase
 end
endmodule

module mux2 #(parameter WIDTH = 4)
 (input logic [WIDTH-1:0] d0, d1,
 input logic s,
 output logic [WIDTH-1:0] y);

 always_comb
 case (s)
 0: y = d0;
 1: y = d1;
 endcase
endmodule

// check winner logic
module check_winner(
 reset,

 stacka,
 stackb,
 stackc,
 winner);

 //inputs and outputs

 input reg reset;
 input reg [3:0] stacka, stackb, stackc;
 output reg winner;

// if reset is being asserted, then there is no winner
// otherwise, if all stacks are empty, then someone has won the game.
 always @(*) begin
 if(reset == 1) begin,
 winner = 0;
 end
 else if((stacka == 0) && (stackb == 0) && (stackc == 0)) begin
 winner = 1;
 end
 else begin
 winner = 0;
 end
 end
endmodule

// ai logic
module nim_logic(stacka, stackb, stackc, stack_choice, stack_out);
 // input-output ports
 input reg [3:0] stacka, stackb, stackc;
 output reg [2:0] stack_choice; // the stack that will be changed
 output reg [3:0] stack_out; // new value of stack that will be changed

 reg [3:0] x, a_prime, b_prime, c_prime;

 // XOR logic

 always @ (*) begin

 x = (stacka^stackb)^stackc; // take bitwise xor of the three stacks to get nim sum
 a_prime = x^stacka; // next, take the bitwise xor of the nim sum
 b_prime = x^stackb; // and each of the three stacks
 c_prime = x^stackc; // resulting numbers give target size for each stack,
 // but not each one will correspond to a valid move
 if(a_prime < stacka) begin // if the target size for stack a is less than

// the current size of stack a,
 stack_out = a_prime; // reduce stack a to its target size
 stack_choice = 3'b001;
 end

 else if(b_prime < stackb) begin // likewise
 stack_out = b_prime;
 stack_choice = 3'b010;
 end

 else if(c_prime < stackc) begin // likewise
 stack_out = c_prime;
 stack_choice = 3'b100;
 end

 // If none of those three moves were valid, we remove one bead from the first non-empty
 // stack and hope the human makes a mistake

 else if(stacka != 0) begin
 stack_out = stacka - 1;
 stack_choice = 3'b001;

 end

 else if(stackb != 0) begin
 stack_out = stackb - 1;
 stack_choice = 3'b010;

 end

 else if(stackc != 0) begin
 stack_out = stackc - 1;
 stack_choice = 3'b100;

 end
 else begin // should never happen (this module will only be called when at least one

// of the stacks is still non-empty)

 stack_out = stacka;
 stack_choice = 3'b001;
 end
 end
endmodule

// Takes in human input, checks to see if it is valid
// If invalid, passes through original stack value
// If valid, passes through new stack value
module human_logic(
 turn_enable,
 stack_choice_in,
 num_remove_in,
 stacka,
 stackb,
 stackc,
 stack_choice,
 stack_out,
 validity);

 input reg turn_enable;
 input reg [2:0] stack_choice_in;
 input reg [3:0] num_remove_in, stacka, stackb, stackc;
 output reg [2:0] stack_choice;
 output reg [3:0] stack_out;
 output reg validity;

 reg [3:0] stack_size;

 always @(*) begin

case (stack_choice_in) // take size of the user's chosen stack and wire it to stack_size
 3'b001: stack_size = stacka;
 3'b010: stack_size = stackb;
 3'b100: stack_size = stackc;
 default: validity = 0; // if the user is stupid and asks for an invalid stack,
 // the move is automatically invalid.
 Endcase

// if the user's chosen stack contains less beads than the user is trying to remove
// or if the user tries to remove 0 beads, then the move isn’t valid.

 if((stack_size < num_remove_in) || (num_remove_in == 0)) begin
 validity = 0;
 end
 else begin
 validity = 1; // otherwise, the move is valid.
 end

// if the user input was valid, pass the user's chosen stack to the output stack_choice
// and subtract to find the new value of the stack that was chosen.

 if ((turn_enable == 1) && (validity == 1)) begin
 stack_choice = stack_choice_in;
 stack_out = stack_size - num_remove_in;

 end
 else begin // if move was invalid or if enable was not asserted,
 stack_choice = 3'b000; // don't choose any stack
 stack_out = 0; // and this shouldn't matter
 end
 end
endmodule

// **************************** flip flop stuff ****************************
module flopenr #(parameter WIDTH = 8)
 (input logic ph1, ph2, reset, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 logic [WIDTH-1:0] d2, resetval;

 assign resetval = 0;

 mux3 #(WIDTH) enrmux(q, d, resetval, {reset, en}, d2);
 flop #(WIDTH) f(ph1, ph2, d2, q);
endmodule

module flopen #(parameter WIDTH = 4)
 (input logic ph1, ph2, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 logic [WIDTH-1:0] d2;

 mux2 #(WIDTH) enmux(q, d, en, d2);
 flop #(WIDTH) f(ph1, ph2, d2, q);
endmodule

module flop #(parameter WIDTH = 4)
 (input logic ph1, ph2,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 logic [WIDTH-1:0] mid;

 latch #(WIDTH) master(ph2, d, mid);
 latch #(WIDTH) slave(ph1, mid, q);
endmodule

module mux3 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1, d2,
 input logic [1:0] s,
 output logic [WIDTH-1:0] y);

 always_comb
 casez (s)
 2'b00: y = d0;
 2'b01: y = d1;
 2'b1?: y = d2;
 endcase
endmodule

module latch #(parameter WIDTH = 4)
 (input logic ph,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_latch
 if (ph) q <= d;
endmodule
// ********************* end of flip flop stuff **********************************

Appendix 2: Schematics

Schematic 1: nor4 leaf cell

Schematic 2: make_move

Schematic 3: check_winner

Schematic 4: stack_memory

Schematic 5: stack_memory_1x

Schematic 6: datapath

Schematic 7: core

Schematic 8: chip

Schematic 9: nimframe

Appendix 3: Layouts

Layout 1: nor4

Layout 2: make_move

Layout 3: check_winner

Layout 4: stack_memory

Layout 5: datapath

Layout 6: core

Layout 7: chip

