
The Game Of Simon

Alex Grammar
Daniel Bujalski

Thomas Oh

4/18/2010

Introduction
 The team designed and built an on-chip implementation of the classic pattern matching
game of Simon. The chip is designed to generate a random sequence of colors (from the set of
red, green, blue, and yellow) for the player to later try to match. This sequence is stored in an
internal SRAM memory block and is played back to the user before waiting for input. The
player's input comes into the system through four external buttons (one for each color), which
are assumed to be debounced by external hardware. The player is required to press the buttons in
the order that the system outputs the colors as a test of the player's memory. The internal
memory is large enough to hold a color sequence 63 "stages" long, so if the user reaches that
point, the game declares a win and all output lights are turned on. If at any time during input the
user presses an incorrect light, the game is lost and only two lights are lit (red and green). At all
times, the chip outputs the user’s score which is equal to the number of stages in the current
sequence. To start or restart the game, the user must press a reset button, which erases the old
sequence and begins the game anew.

Specifications

Theory of Operation:

 The device is simply a complex finite state machine, following a distinct process flow to
carry out the game's functions. When first turned on, the chip will experience some extraneous
processing for the first few nanoseconds, but will quickly revert to a "do-nothing" state. In
addition, a separate 2-bit counter, which will be afterwards referred to as RNG_counter, will
be initialized that will run for the duration of the device's time powered. The game is initialized
by a reset pulse triggered by an external button. This resets all relevant parameters in the logic:
the score, the reference position for the memory, and the sequence terms. The logical state
machine reverts to the state START, which denotes the start of game iteration. However,
RNG_counter is not reset by this action.
 Upon reaching the START state, the logic sets an enable write_en. This bit tells the
memory module to write to the memory address specified by the valuecurr_pos (which is
equal to the current score, which is 0 to start). The value written comes directly from the
output of RNG_counter, meaning a "random" number between 0 and 3 will be passed. The
number represents a certain color: 0 for red, 1 for blue, 2 for green, and 3 for yellow. Once this
is done, the FSM simply moves on.
 The next states handle the output logic, which output the terms of the sequence for the
player to see. The first state here is PRE-OUTPUT, which prepares certain parameters for
outputting - in particular, curr_pos is reset to zero and score is incremented. Following this
comes OUTPUT_SEQ, which outputs a term in the sequence. This state will read and output the

contents of memory at position curr_pos, increment curr_pos, and return to itself until
curr_pos equals score (ie: the sequence has been outputted). At this point, the state
POST_OUT will be called that simply resets curr_pos again in preparation for input.
 At this point, the FSM goes to the state INPUT_SEQ, which waits for user input. During
this state, the logic continually reads the current stage from memory and enables input detection.
At this point, the player may press the corresponding keys and the logic will accept them. Upon
detecting a key press, the FSM passes to state CHECK, which checks the input against the
sequence (and determines a loss if necessary). A successful input calls CHECK_WIN, which
checks to see if the end of the sequence has been reached and, if so, returns to START for the
next iteration. Should score ever equal 63 at this point, the WIN state will be called here.
 Should the player successfully complete one iteration of the sequence, the FSM continues
with the next iteration (with an additional stage in the sequence). This continues until the player
wins (WIN), loses (LOSE), or presses the reset.
 It should also be mentioned that, regarding our logic structure, testing the game would be
difficult to do manually. Therefore, our testbench had to be made "reactive" to the sequence
outputs somehow. In order to facilitate this, a 3-bit quantity cheat_out was added as an
output. During INPUT_SEQ, cheat_out will consist of a 1 followed by the 2 bits corresponding
to the color in the sequence (ie: a red would be 100, while a blue would be 101). At all other
times, this would be 000. In this way, the testbench can recognize when and what it should
provide as input to the system.

Pin Name Direction Planned Pin Number(s)
VDD Input/Output 1,5,7,15,17,25,34,37,39
GND Input/Output 2,4,6,14,16,26,35,36,38,40
score<6:0> Output 33-27 (0 at pin 33)
ph1 Input 8
ph2 Input 9
red Input 11
yellow Input 12
green Input 13
blue Input 10
r_out Output 21
y_out Output 22
g_out Output 24
b_out Output 23
reset Input 3
cheat_out<2:0> Output 20-18 (0 at pin 20)

Table 1:List of Chip Pin Designations and Directions

Floorplan

 When proposing our project, we made an initial floorplan to estimate how much space
the logic blocks would require. Since our experience with layout sizing was fairly limited, we
were forced to use some guesswork to make our estimates of the block sizes, albeit with some
small research to back the estimates up a little. However, immediately upon beginning layout
work, it was obvious that the estimates were wrong. Initially, we had guessed at using only a
very small fraction (maybe 5-10%) of the space within the padframe with 4-5 logic blocks, the
largest of which was in the range of 90λ x 1500λ. Although we still had the same number of
blocks in the final layout, the sizes were much larger, to the point where we would fill most (if
not all) of the available space. In addition, we discovered a significant problem with the memory
module in that it was too tall for the padframe (it being close to 5500λ in height).
 As it was, the only block that was reasonably close to estimates was RNG_counter,
which we can attribute to our having some knowledge of the counter hardware. However, lack
of experience combined with synthesis issues completely threw off our other estimates. Given
time, however, the final layout could still fit within the padframe if the memory were to be split
in half.

Verification

The simon_top Verilog module (appendix A) will successfully complete the test bench
(appendix B). The test bench tests all cases of the logic by constructing a winning scenario,
where the inputs always match the sequence until the sequence reaches 63 stages, and a losing
scenario, where the testbench deliberately enters an incorrect input. In addition, we tested the
randomness of the output from RNG_counter by pulling values from it at random times using
another simple testbench, since the deterministic nature of Verilog prevented us from achieving
true randomness in the original testbench. The completed schematic of the simon game derived
from the Verilog passes the same testbench as well, indicating that our schematics are correct
and match the desired logic.
 The second stage of verification involved the testing of the layouts derived from
schematic. The team’s layouts for all cells that make up simon_top (the top-level or core
module) successfully passed both DRC and LVS, indicating that the layouts matched the
schematics and would operate as desired. In addition, the padframe we assembled also passed
DRC and LVS. Unfortunately due to the oversight in the configuration of the memory layout
and a lack of time, we were not able to combine the padframe and simon_top into the
completed chip layout and thus have no CIF results. However, we do know it would be possible,
given time, to change the aspect ratio of the memory layout such that the core would fit in the
padframe, which would allow for eventual manufacture.

Post-fabrication Test Plan

 Since the final chip was unable to be completed, manufacture is not currently possible.
However, had it been manufactured, the following test plan would be necessary to verify chip
integrity.
 The first step in post-fab testing would be to check the functionality of the reset
command after powering on. A high reset will set the output score to 0000000, and a single
color should be shown to the user. The output cheat_out would also indicate this color as the
device waits for input. Should this prove successful, the next step would be to try the "win" case,
wherein the tester would play through all 63 stages. This could be easily done with the use of the
cheat_out pins indicating the correct button to press. After that the tester should play through
a "lose" scenario, which involved pressing correct input for several stages before deliberately
failing. This proves the functionality of the "lose" logic as well as checks to see if a new game is
generated with a different sequence than the first. Finally the tester could try to “break” the game
by mashing the input buttons, or pressing multiple buttons at the same time. If the chip does not
lock up, then the device can be considered to have passed post-fabrication testing. While
performing this test by hand is time consuming, a simple microcontroller device could be
constructed to utilize the cheat out pins to play the game automatically and monitor the “light
out” pins to determine winning and losing.

Design Time

Design Phase Hours Spent
Proposal 4 hours
Verilog 8 hours
Schematic 30 hours
Layout 48 hours

Table 2:- Distribution of the amount of time spent on each design phase by the team

File Locations

All files are in Daniel Bujalski's chips directory (dbujalski).

Verilog modules - ~/IC_CAD/cadence/simon_top.v
Testbench - ~/IC_CAD/cadence/simon_top_run1/testfixture.template
Synthesis results - ~/IC_CAD/synth
Cadence libraries - ~/IC_CAD/cadence
Chip plot (actually simon_top) - ~/IC_CAD/cadence/chip.pdf
Report PDF - ~/IC_CAD/cadence/The_Game_of_Simon.pdf

References

Harris, David M., and Neil H. E. Weste. CMOS VLSI Design: A Circuits and Systems
 Perspective, 4th Edition. Massachusetts: Addison-Wesley, 2010.

Appendix A - Verilog Modules

`timescale 1ns / 1ps

//Module implementing the simon game
//Written by Daniel Bujalski, Thomas Oh, and Alex Grammar

module simon_game (input red, yellow, green, blue, //Color inputs
 ph1, ph2, //Clock inputs (ph1 is opposite of ph2)
 reset, //Reset pin
 output r_out, y_out, g_out, b_out,//Color outputs
 output [6:0] score, //Score output (ALSO keeps track of
 sequence length)
 output [2:0] cheat_out); //Output for testing only, outputs
 current contents of

 parameter START = 3'b000;
 parameter PRE_OUTPUT = 3'b001;
 parameter OUTPUT_SEQ = 3'b010;
 parameter INPUT_SEQ = 3'b011;
 parameter CHECK = 3'b100;
 parameter LOSE = 3'b101;
 parameter RESET = 3'b110;
 parameter WIN = 3'b111;

 //Various wires/regs
 wire input_en;
 wire [6:0] curr_pos; //Current position reference in the simon sequence memory
 wire [1:0] RNG_out; //Output of the random number generator
 wire [1:0] mem_in; //Input for writing to the sequence memory
 wire write_en; //Enable for writing to the sequence memory
 wire [1:0] mem_out; //Output from memory (contents of mem at curr_pos)
 wire [2:0] button_out; //Output from input handler (ultimately from the 'buttons')

 //Instances
 RNG_counter RNG (ph1, ph2, RNG_out); //Random number generator (RNG) instance
 //Simon sequence memory instance:
 sequence_mem simon_mem (curr_pos, mem_in, write_en, mem_out);
 //Simon input handler instance:
 input_handler simon_in (red, green, blue, yellow, input_en, button_out);
 //Simon processor instance
 simonprocessing ssm(ph1,ph2,reset,button_out,RNG_out,mem_out,write_en,r_out,y_out,g_out,
 b_out,input_en, mem_in,score,curr_pos,cheat_out);

endmodule

//--
//Processor for simon game logic - includes controller and datapath
//--

module simonprocessing(input ph1, ph2, reset,
 input [2:0] button_out,
 input [1:0] RNG_out, mem_out,
 output write_en, read_en, r_out, y_out, g_out, b_out, input_en,
 output [1:0] mem_in,
 output [6:0] score, curr_pos,
 output [2:0] cheat_out);

 wire scoreinc,curr_posinc,resetcurr_pos; //Enables for changing score and curr_pos

 simoncontroller sc(ph1,ph2,reset,button_out,mem_out,curr_pos,score,cheat_out,scoreinc
 curr_posinc, resetcurr_pos, write_en,read_en,input_en,r_out,g_out,b_out,y_out);
 simondatapath sdp(ph1,ph2,reset,curr_posinc,scoreinc,resetcurr_pos,RNG_out,score,
 curr_pos,mem_in);

endmodule

module simoncontroller(input ph1, ph2, reset,
 input [2:0] button_out,
 input [1:0] mem_out,
 input [6:0] curr_pos, score,
 output [2:0] cheat_out,
 output scoreinc, curr_posinc, resetcurr_pos,
 output write_en, read_en, input_en,
 output r_out, g_out, b_out, y_out);

 wire [3:0] state;

 simonstatelogic ssl(ph1,ph2,reset,curr_pos,score,button_out,mem_out,state);
 simonoutputlogic sol(state,mem_out,score,curr_pos,cheat_out,scoreinc,curr_posinc,
 resetcurr_pos,write_en,read_en,input_en,r_out,g_out,b_out,y_out);

endmodule

module simonstatelogic(input ph1, ph2, reset,
 input [6:0] curr_pos, score,
 input [2:0] button_out,
 input [1:0] mem_out,
 output [3:0] state);

 reg [3:0] nextstate;
 wire [3:0] ns, state_logic;

 parameter START = 4'b0111;
 parameter PRE_OUTPUT = 4'b0001;
 parameter OUTPUT_SEQ = 4'b0010;
 parameter POST_OUT = 4'b0011;
 parameter INPUT_SEQ = 4'b0100;
 parameter CHECK = 4'b0101;
 parameter CHECK_WIN = 4'b0110;
 parameter WIN = 4'b0000;
 parameter LOSE = 4'b1000;

 mux2 #(4) resetmux(nextstate,START,reset,ns);
 flop #(4) statereg(ph1,ph2,ns,state_logic);
 assign state = state_logic;

 //next state logic
 always @ (*)
 begin
 case(state)
 //Start of the machine...adds a term to the sequence end
 START: nextstate = PRE_OUTPUT;
 //Prepares for outputs by changing score/curr_pos
 PRE_OUTPUT: nextstate = OUTPUT_SEQ;
 //Determines which color is next to output
 OUTPUT_SEQ: begin
 //If these match, we hit the end of the sequence
 if (score == curr_pos) begin
 nextstate = POST_OUT; //...so we move on
 end else begin
 nextstate = OUTPUT_SEQ;
 end
 end
 //Prepares for input watching
 POST_OUT: nextstate = INPUT_SEQ;
 //Seaches for input, only transitions on button-press
 INPUT_SEQ: begin
 //Button press goes to be checked
 if (button_out[2])
 nextstate = CHECK;
 else //Otherwise keep lookin'
 nextstate = INPUT_SEQ;
 end
 //On a button press, checks against current part of sequence
 CHECK: begin
 if (button_out[1:0] == mem_out) //A match!
 nextstate = CHECK_WIN;
 //Check for a win
 else
 //A wrong button press means you lose!
 nextstate = LOSE;
 end
 //Check for the end of the sequence and/or a win (63 terms)
 CHECK_WIN: begin
 //End of the current sequence
 if (score == curr_pos)
 if (score == 7'b1000000)
 //If score reaches our max value, its a win
 nextstate = WIN;
 else
 //Otherwise, go to the beginning
 nextstate = START;
 else
 nextstate = INPUT_SEQ;
 end
 LOSE: nextstate = LOSE; //Loss...
 WIN: nextstate = WIN; //Win!
 default: nextstate = START; //Shouldn't happen
 endcase
 end
endmodule

module simonoutputlogic(input [3:0] state,
 input [1:0] mem_out,
 input [6:0] score, curr_pos,
 output reg [2:0] cheat_out,
 output reg scoreinc, curr_posinc, resetcurr_pos,
 output reg write_en, read_en, input_en,
 output reg r_out, g_out, b_out, y_out);

 parameter START = 4'b0111;
 parameter PRE_OUTPUT = 4'b0001;
 parameter OUTPUT_SEQ = 4'b0010;
 parameter POST_OUT = 4'b0011;
 parameter INPUT_SEQ = 4'b0100;
 parameter CHECK = 4'b0101;
 parameter CHECK_WIN = 4'b0110;
 parameter WIN = 4'b0000;
 parameter LOSE = 4'b1000;

 always @ (*)
 begin
 write_en = 0; //Enable memory writing
 read_en = 0; //Enable memory reading (for output)
 scoreinc = 0; //increment score
 curr_posinc = 0; //increment curr_pos
 input_en = 0; //Enable input tracking
 resetcurr_pos = 0; //Reset curr_pos
 r_out = 0; //Color outputs
 g_out = 0;
 b_out = 0;
 y_out = 0;
 cheat_out = 3'b000; //Output for testbench
 case(state)
 START: //Start of the machine...adds a term to the sequence end
 begin
 //Write new term to memory
 write_en = 1;
 end
 PRE_OUTPUT: //Prepares for outputs by changing score/curr_pos
 begin
 scoreinc = 1; //Enable score increment
 resetcurr_pos = 1; //Enable curr_pos reset
 end
 OUTPUT_SEQ: //Increment curr_pos each time through
 begin
 //Only does this if curr_pos is less than score
 if (curr_pos != score) begin
 curr_posinc = 1;
 read_en = 1;
 case (mem_out)
 2'b00: r_out = 1;
 2'b01: b_out = 1;
 2'b10: g_out = 1;
 2'b11: y_out = 1;
 default: begin end//nothing
 endcase
 end
 end
 POST_OUT: //Post-outputting setup for input handling
 begin
 resetcurr_pos = 1; //Enable curr_pos reset
 end

 INPUT_SEQ: //Looks for an input
 begin
 read_en = 1; //Read from memory for cheat_out
 input_en = 1; //Input handling enabled
 //Send out cheat_out for testbench
 cheat_out = {1'b0,mem_out} + 3'b100;
 end
 CHECK: //Upon a button press, perform actions related to it
 begin
 read_en = 1;
 input_en = 1; //Keep input enable high for check
 curr_posinc = 1; //Increment curr_pos in any case
 end
 CHECK_WIN: //Checks to see if player has won
 begin //Currently doesn't need to do anything
 end
 LOSE:
 begin //Player loses, light half the outputs
 r_out = 1'b1;
 b_out = 1'b0;
 g_out = 1'b1;
 y_out = 1'b0;
 end
 WIN:
 begin //Player wins, flash all outputs at once
 r_out = 1'b1;
 b_out = 1'b1;
 g_out = 1'b1;
 y_out = 1'b1;
 end
 default: begin //Shouldn't be reached
 end
 endcase
 end
endmodule

module simondatapath(input ph1, ph2, reset,
 input curr_posinc, scoreinc, resetcurr_pos,
 input [1:0] RNG_out,
 output [6:0] score, curr_pos,
 output [1:0] mem_in);

 flopenr #(7) curr_pos_flop(ph1, ph2, (reset || resetcurr_pos), curr_posinc,
 curr_pos+1'b1, curr_pos);
 flopenr #(7) score_flop(ph1, ph2, reset, scoreinc, score+1'b1, score);
 flop #(2) add_term_flop(ph1,ph2,RNG_out,mem_in);

endmodule

//--
//RNG_counter to generate random numbers for sequence
//--

module RNG_counter(input ph1, ph2,
 output [1:0] count_out);

 reg [1:0] count = 0;

 flop #(2) countflop(ph1,ph2,count,count_out);

 always @ (*)
 count <= count_out + 1;

endmodule

//--
//Sequence memory for storing the stages (note: does not have a read enable here
//as it was introduced manually in schematic)
//--

module sequence_mem(input [6:0] curr_pos,
 input [1:0] RNG_in,
 input write_en,
 output [1:0] color_out);

 reg [1:0] seq_mem[2**6:0];

 //Write contents of RNG_in to memory location curr_pos
 //when write_en is set high (on edge)
 always @ (posedge write_en)
 seq_mem[curr_pos] <= RNG_in;

 //Module outputs the contents of memory at curr_pos
 assign color_out = seq_mem[curr_pos];
endmodule

//--
//Input handler module for the simon game which avoids multiple inputs in series
//--

module input_handler(
 input r, g, b, y,
 input en,
 output [2:0] color_out
);

 wire [2:0] mid;

 mux2 #(3) endmux(3'b000, mid, en, color_out);
 mux16 #(3) decodermux(3'b100,3'b101,3'b110,3'b111,3'b000,{y,g,b,r},mid);

endmodule

//Special mux for input (each bit of input is one of the lights)
module mux16 #(parameter WIDTH = 8)
 (input [WIDTH-1:0] d0, d1, d2, d3, d4,
 input [3:0] s,
 output reg [WIDTH-1:0] y);

 always @ (*)
 case(s)
 4'b0001: y = d0;
 4'b0010: y = d1;
 4'b0100: y = d2;
 4'b1000: y = d3;
 default: y = d4;
 endcase
endmodule

//Other useful blocks - flops, muxes, etc.

module flop #(parameter WIDTH = 8)
 (input ph1, ph2,
 input [WIDTH-1:0] d,
 output [WIDTH-1:0] q);

 wire [WIDTH-1:0] mid;

 latch #(WIDTH) master(ph2, d, mid);
 latch #(WIDTH) slave(ph1, mid, q);
endmodule

module flopen #(parameter WIDTH = 8)
 (input ph1, ph2, en,
 input [WIDTH-1:0] d,
 output [WIDTH-1:0] q);

 wire [WIDTH-1:0] d2;

 mux2 #(WIDTH) enmux(q, d, en, d2);
 flop #(WIDTH) f(ph1, ph2, d2, q);
endmodule

module flopenr #(parameter WIDTH = 8)
 (input ph1, ph2, reset, en,
 input [WIDTH-1:0] d,
 output [WIDTH-1:0] q);

 wire [WIDTH-1:0] resetval, d2, mid;

 // assign resetval = 0;

// mux3 #(WIDTH) enrmux(q, d, resetval, {reset, en}, d2);

 mux2 #(WIDTH) enmux(q, d, en, mid);
//Used to be WIDTH'b0, but synthesis would not take it, so is at the moment a hard value
// mux2 #(WIDTH) resetmux(mid,{WIDTH{1'b0}},reset,d2);
// flop #(WIDTH) f(ph1, ph2, d2, q);
 flopr #(WIDTH) f(ph1, ph2, reset, mid, q);
endmodule

module flopr #(parameter WIDTH = 8)
 (input ph1, ph2, reset,
 input [WIDTH-1:0] d,
 output [WIDTH-1:0] q);

 wire [WIDTH-1:0] mid;

 latchr #(WIDTH) master(ph2, reset, d, mid);

 latch #(WIDTH) slave(ph1, mid, q);
endmodule

module latchr #(parameter WIDTH = 8)
 (input ph, reset,
 input [WIDTH-1:0] d,
 output reg [WIDTH-1:0] q);

 always @ (*)
 if (ph)
 if (reset) q <= {WIDTH{1'b0}};
 else q <= d;
endmodule

module latch #(parameter WIDTH = 8)
 (input ph,
 input [WIDTH-1:0] d,
 output reg [WIDTH-1:0] q);

 always @ (*)
 if (ph) q <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
 (input [WIDTH-1:0] d0, d1,
 input s,
 output [WIDTH-1:0] y);

 assign y = s ? d1 : d0;
endmodule

module mux3 #(parameter WIDTH = 8)
 (input [WIDTH-1:0] d0, d1, d2,
 input [1:0] s,
 output reg [WIDTH-1:0] y);

 always @ (*)
 casez (s)
 2'b00: y = d0;
 2'b01: y = d1;
 2'b1?: y = d2;
 endcase
endmodule

Appendix B - Testbench

`timescale 1ns / 1ps

module test;

 reg r, y, g, b, reset;
 wire r_out, g_out, y_out, b_out;
 wire [6:0] score;
 wire [2:0] cheat_out;
 reg ph1, ph2;
 reg test_en = 0;
 reg lose_test_en = 0;

 //Simon game instance
 simon_top dut(b_out, cheat_out, g_out, r_out, score, y_out, b, g, ph1, ph2, r, reset, y);

 //Clock generation
 always
 begin
 ph1 = 0; ph2 = 0;
 #1; ph1 = 1;
 #4; ph1 = 0;
 #1; ph2 = 1;
 #4; ph2 = 0;
 end

 //Begin testing (enable win test)
 initial
 begin
 reset = 0; #5;
 #27;
 #1200; //Wait a bunch for easier viewing
 reset = 1; //Toggle reset to begin the game
 #27;
 reset = 0;
 test_en = 1;//And enable the test
 end

 //Testing logic - handles both win and lose tests
 always @ (posedge ph1)
 begin
 r = 0;
 b = 0;
 g = 0;
 y = 0;
 //If all outputs are set, the player has won...the win test has succeeded
 if (r_out && g_out && b_out && y_out && (score == 7'b1000000)) begin
 $display("Simon game has completed the winning test
 successfully.");
 $display("Commencing lose test after 7 stages...");
 lose_test_en = 1; //Enable lose test, disable win test
 test_en = 0;
 reset = 1; #27; reset = 0; //Reset the game
 //If r and g outputs are set together ONLY, this signifies
 //a lose. For our test, it succeeds if the score is 7 when this happens.
 end else if (r_out && g_out && !y_out && !b_out &&(score == 3'b111)) begin
 $display("Simon game has completed the losing test
 successfully(?).");
 reset = 1; #27; reset = 0; //All done

 lose_test_en = 0;
 $finish;
 //Now, if win test is enabled...the testbench will use a cheat input from
 //the simon module to enter correct inputs every time.
 //NOTE: this only runs if cheat_out[2] (a validity bit) is set...so that
 //the testbench only sets the inputs when the simon module asks for them.
 end else if (test_en && cheat_out[2]) begin
 case(cheat_out[1:0]) //Set the appropriate input.
 2'b00: begin r = 1; b = 0; g = 0; y = 0; end
 2'b01: begin b = 1; r = 0; g = 0; y = 0; end
 2'b10: begin g = 1; b = 0; r = 0; y = 0; end
 2'b11: begin y = 1; b = 0; g = 0; r = 0; end
 default:;
 endcase
 //Lose test runs very similarly to the win test...save for one thing.
 end else if (lose_test_en && cheat_out[2]) begin
 //When we've gotten to a sequence of length 7, purposefully fail
 //by asserting an arbitrary input
 if (score == 3'b111) begin
 r = 1; //Red is cool :)
 end else begin
 case(cheat_out[1:0]) //Same as for win testing
 2'b00: r = 1;
 2'b01: b = 1;
 2'b10: g = 1;
 2'b11: y = 1;
 default:;
 endcase
 end
 //This last else clears the color inputs (since the simon module is not
 //ready for an input yet...denoted by cheat_out[2] being 0.
 end else if (!cheat_out[2]) begin
 r = 0;
 b = 0;
 g = 0;
 y = 0;
 end
 end

endmodule

Appendix C - Schematics
Note: Synthesized block schematics will not be shown for simplicity.
These include RNG_counter, simonprocessing, and decodder6_64.

Core simon_top schematic:

Input handler decodermux schematic:

Custom leaf cell tristate_1 schematic:

Memory sram_12T_64x2bit_wdec_mem schematic:
(decoder6_64 is synthesized from a large case statement)

Memory sram_12T_64x2bit_nodec_mem schematic selection:
(module to large to display fully, is actually two modules for two bits)

Memory sram_12T_1bit schematic:

Appendix D - Layout Diagrams
Note: synthesized blocks will be shown at top level (simon_top), but not in detail.
These include RNG_counter, simonprocessing, and decodder6_64.

simon_top layout

Input handler decodermux layout:

Custom leaf cell tristate_1 layout:

Memory sram_12T_64x2bit_nodec_mem partial layout:

Note pairs of SRAM blocks on the right, the layout of which follows this one.

Memory sram_12T_1bit layout:

