
 

 

SHA-1 Cryptographic Hash Unit 

Kyle Baran and Will Buik 

E158 

April 19, 2010 

 

 

 

  



Introduction 

The goal of this project was to create a functioning implementation of the SHA-1 cryptographic hash 

algorithm.  The SHA-1 algorithm takes in a message of up to 2
64

-1 bits and produces a unique 160-bit 

hash code.  The hash code is computed through a series of nonlinear functions and rotations of 

temporary 32-bit values until the entire message has been encoded.  This design was intended to be 

implemented on a 1.5x1.5 mm 40-pin MOSIS “TinyChip” fabricated in a 0.6 µm process.   

 

Specifications 

The SHA-1 cryptographic hash algorithm operates on 32-bit words, and processes 16 word long message 

blocks in an iterative process consisting of 80 rounds.  The algorithm maintains a five word state that 

each round modifies to produce the final hash.  To process each message block, the five word state is 

copied, each round modifies the copy, and it is then added to the original state.  The algorithm extends 

the 16 word message into an 80 word message, but since each extended message word depends only on 

the previous 16, only 16 words of storage are needed to handle the message extension.  The algorithm 

as implemented requires 16 words of storage for the message block, ten words of storage for the state, 

two words of storage for temporary values, and ten hard coded constant values.  Further details of the 

SHA1 algorithm may be found in Appendix C. 

Architecture 

The core is broken down into three top level cells: a controller, counter bank, and datapath.   The 

controller was synthesized from Verilog code, while the counter bank and datapath, both of which 

express a higher degree of regularity, were laid out by hand.  The datapath contains two memory banks, 

a ROM, a single temporary register implemented as a flip flop, an ALU, and an input output direction 

selector.  The counter bank consists of three five-bit counters and are used by the controller to keep 

track of rounds and memory locations.  Finally, the controller directs the multiplexors and tristates in 

the datapath and interfaces the counters to coordinate the SHA-1 algorithm. 

Since the SHA-1 algorithm operates on 32-bit words, it was decided that the inputs and outputs would 

also be 32 bits wide.  Because there are only 40 pins on the TinyChip, it was determined that the input 

and output words would have to share the same pins.  This was found to not be a problem since the 

design uses additional pins to control whether it is inputting or outputting data, making it impossible for 

data to be moving in both directions at the same time. Table 1 shows the inputs and outputs of the chip. 

Pin Name Direction Width 

vdd Input 1 

gnd Input 1 

io Input/Output 32 

ph1 Input 1 

ph2 Input 1 

Reset Input 1 



Block Input 1 

Hash Output 1 

Ready Output 1 

Table 1: Listing of SHA-1 Inputs and Outputs 

VDD and GND are the power and ground lines for the chip.  IO is the shared input and output pins.  Ph1 

and Ph2 are two-phase non-overlapping clocks.  Reset is the global reset for all of the cells.  Block signals 

that the chip should input a sixteen word message block on the subsequent sixteen cycles.  Hash signals 

that the chip should output the five word hash on the subsequent five cycles.  Ready indicates that the 

chip can accept a message block or output the hash.  In addition, Ready indicates the direction of the 

input output pins.  When Ready is high, the io pins are in input mode. 

SRAM 

The SRAM was responsible for storing the sixteen 32-bit words that make up the 512-bit message block.  

This cell contained an address buffer and 16 single-word SRAM cells. 

Memory and Constant Bank 

The memory and constant bank was responsible for storing the words of state as well as the constants 

used in the algorithm.  It contained a ROM/RAM block made up of a 9-word mask ROM and an 11-

element SRAM block; a flip-flop to control the data flow into the SRAM; and a 2-input mux to choose 

between the SRAM and ROM outputs.  Though the SHA-1 algorithm uses 10 constants, one of those 

constants is zero, which does not need to be masked.  The SRAM and ROM cells are interlaced to share 

the SRAM decoders. 

ALU 

The ALU was responsible for performing all of the calculations for the algorithm.  It contained a “Shift A” 

cell that selected between unshifted, 5-bit left shifted, or 30-bit left shifted values of data coming from 

the temporary flip-flop, a “Shift B” cell that selected between unshifted and 1-bit left shifted values of 

data from either the SRAM or Memory and Constant Bank, an inverter, an inverting xnor cell, an 

inverting fulladder, a nand gate, and multiplexors to select the operation. 

Flip-Flop 

The flip-flop was used to hold temporary values outputted by the ALU.  These values would later be 

passed back into the ALU for further processing. 

I/O Selection Block 

The I/O select block determined whether to pass the data coming out of the ALU back into the datapath 

or to the output pins. 

The schematics and layouts of all custom blocks may be seen in Appendix B. 

 

 



Floor Plan: 

The final floor plan consumed almost twice as much area as the initial estimate, as seen in Figure 1.  This 

was due primarily to the decision to implement the full SHA1 algorithm instead of the initially proposed 

version which would have acted on 8-bit data words.  The final controller became larger because more 

states were required to handle the full algorithm and the datapath grew as it became 32 bits wide rather 

than 8.  In addition, the initial estimate did not integrate the 16 Word Shift Register into the datapath 

and the final version of the chip separated the three counters from the synthesized controller. 

The controller and counter bank both used standard muddlib10 cells, inverting every other row to share 

VDD and ground lines.  These blocks had a pitch of 90 lambda and were six rows and five rows tall 

respectively.  The datapath, however, could not use standard muddlib10 cells as they were too large to 

fit all 32 slices reasonably onto the chip.  As such, reduced height cells were designed with to be six 

wiring tracks tall rather than eight.  The datapath consisted of three zipper rows using muddlib10 cells at 

110 lambda pitch, and 32 rows of reduced height cells at a 70 lambda pitch by inverting every other row.  

The ground plane for the first zipper row was shared with the 32
nd

 row of reduced height cells. 

The third row of zippers was used for write address decoding and buffering, the second row of zippers 

was used for read address decoding and buffering, and the first row of zippers was general purpose.  

Except for the memories, all word slices had a single row of zipper logic.  The memory banks required all 

three rows for address decoding, and had address line buffers hanging off to the side.  These address 

line buffers fit over the other word slice zippers since they only used the first zipper row.   

The sliceplans of the datapath, ALU, and IOSelect modules are shown in Figure 2.  The pinout of the chip 

can be seen in Figure 3. 

C
o

r
e

 3
4

0
0

x
3

4
0

0
λ

 

Figure 1: Preliminary and Final Floorplans. 



 

 

Figure 2: Slice Plans of the Datapath, ALU and IOSelect. 

 

Figure 3: Pinout Diagram 



Verification: 

The design was first verified as a Verilog model.  A test bench generator was written, the code for which 

is in Appendix D.  This generator was verified against a known working implementation of the SHA-1 

algorithm.  A self checking test bench was designed to test the Verilog model.  It tested only a single 

random message block, but due to the nature of the SHA-1 algorithm any small error propagates to the 

final hash, often drastically changing the result.  The Verilog model was designed to be as close to the 

actual design as possible, and can be found in Appendix A. 

Next, the schematics of each cell were designed using the Virtuoso Schematic Editor.  Each was netlisted 

and plugged in individually to the Verilog model to verify functionality. The controller was synthesized 

from the Verilog model since it had little regularity and would not benefit from being constructed by 

hand.  Once the design was completed up to the core schematic, the netlisted design could be tested 

alone with the same self checking test bench used to verify the Verilog model. 

The only discrepancy in net listing was an intermittent error that caused the inverting 32 bit full adder to 

sometimes not netlist correctly.  Sometimes invalid verilog code for this schematic was generated, that 

cut off before the proper end of the line.  To handle this, a working copy of the inverting 32 bit full adder 

netlist was saved from one of the times it netlisted properly and used in the event that it did not. 

Next, each cell was laid out using layout of the chip using the Virtuoso Layout Editor.  The controller 

layout was synthesized using SOC Encounter.  DRC and LVS were used to ensure that the layouts did not 

violate design rules and that logical netlist and transistor parameters matched the schematics. 

All cells passed DRC, and all cells except the datapath passed LVS.  The team ran out of time while wiring 

the datapath, and as a result it did not pass LVS.  Since the datapath layout was not complete, the core 

layout was not auto routed or placed into a padframe.  As such a CIF could not be created. 

Had the datapath been completed, the core layout would have been auto routed and placed into a 

padframe.  To verify the function of the chip, the top level chip schematic containing padframe and core 

would have been netlisted and verified against the same self checking test bench used for the core.  

Assuming the chip layout passed DRC and LVS, it would have been exported to a CIF, and then re-

imported to verify that DRC and LVS still passed. 

Post-Fabrication Test Plan: 

Due to the tight spacing of elements on the chip, adding a self testing feature to the device was 

infeasible.  As such, the chip must tested using its standard operating procedure.  To do this, the chip 

must be restarted, a sample message loaded into its memory, and the hash value compared to a known 

value.  A programmable microcontroller may be used to test the chip.  Due to the iterative and 

cryptographic natures of the SHA1 algorithm, a single sample message is sufficient to test all facilities of 

the chip.  Since each of the 80 rounds is designed to introduce a high degree of entropy into the 

algorithm’s state, this single test message will likely hit all corner cases of the device.  Additionally, any 



error that occurs during the progress of the algorithm will propagate to the final hash output, making 

failures simple to detect. 

Errors in the controller or counters will cause the hash output to be incorrect if they cause the controller 

to improperly control the datapath.  If the next state logic fails, the hash output will either be incorrect, 

or the chip will never reach the ready state to load the data or to output the hash.  Errors in the 

datapath will cause the hash value to be incorrect. 

By carefully selecting the test message, which consists of 16 32-bit words of input and five 32-bit words 

of expected output, stuck at failures for the input-output pins can be detected.  The test input should 

ensure that every pin is asserted high and low, and should be chosen such that the hash produced 

causes the pins to be asserted both high and low when outputting the five result words.  If any of the 

controller input or output pins are stuck, the chip will fail to output the hash. 

 

Design Time 

The team allocated the following person-hours to the project: 

 Project Proposal:  12 Hours 

 Verilog Model:  24 Hours 

 Schematics:  28 Hours 

 Layout:   80 Hours 

 Final Report:  14 Hours 

 

File Locations: 

Verilog Code:  /home/wbuik/project2_final/sha1full.sv 

Test Vectors:   /home/wbuik/project2_final/sha1full.sv 

Synthesis Results: /home/wbuik/project2_final/core_run1/ 

Cadence Libraries: /home/wbuik/project2_final/sha1/ 
    /home/wbuik/project2_final/sha1_alu/ 

CIF:   N/A (Image on cover page is unrouted core plot not CIF chip plot.) 

PDF Core Plot:  /home/wbuik/project2_final/core.pdf 

PDF of Report:  /home/wbuik/project2_final/finalreport.pdf 

 



Appendix A (Verilog Code and Test Vectors) 
 
typedef enum logic [4:0] { 
    H0 = 5'b00000, 
    H1 = 5'b00001, 
    H2 = 5'b00010, 
    H3 = 5'b00011, 
    H4 = 5'b00100, 
    A = 5'b00101, 
    B = 5'b00110, 
    C = 5'b00111, 
    D = 5'b01000, 
    E = 5'b01001, 
    T2 = 5'b01010, 
 
    AInit = 5'b10000, 
    BInit = 5'b10001, 
    CInit = 5'b10010, 
    DInit = 5'b10011, 
    EInit = 5'b10100, 
    K1 = 5'b10101, 
    K2 = 5'b10110, 
    K3 = 5'b10111, 
    K4 = 5'b11000, 
    ZERO = 5'b11001 
} regreadaddr; 
 
typedef enum logic [3:0] { 
    H0W = 4'b0000, 
    H1W = 4'b0001, 
    H2W = 4'b0010, 
    H3W = 4'b0011, 
    H4W = 4'b0100, 
    AW = 4'b0101, 
    BW = 4'b0110, 
    CW = 4'b0111, 
    DW = 4'b1000, 
    EW = 4'b1001, 
    T2W = 4'b1010 
} regwriteaddr; 
 
typedef enum logic [1:0] { 
    NONE = 2'b00, 
    THIRTY_B = 2'b10, 
    FIVE_B = 2'b01, 
    ONE_A = 2'b11 
} alushift; 
 
typedef enum logic [1:0] { 
    PASS = 2'b00, 
    ADD = 2'b10, 
    XOR = 2'b01, 
    AND = 2'b11 
} aluop; 
 
typedef enum logic { 
    RegOut = 1'b0, 
    WOut = 1'b1 
} srcb; 
 
module controller( 
    // Clock Inputs 
    input logic ph1, ph2, Reset, 
    // Chip Inputs 
    input logic Block, Hash, 
    // Chip Outputs 
    output logic Ready, 
    // Datapath Control 
    output logic [3:0] WAddr, 
    output logic WEn, 
    output regreadaddr RegReadAddr, 
    output regwriteaddr RegWriteAddr, 
    output logic RegWrite, 
    output logic TempWrite, 
    output srcb SrcB, 
    output alushift ALUShift, 
    output aluop ALUOp, 
    output logic CounterAReset, 
    output logic CounterAInc, 
    input logic [4:0] CounterA, 



    output logic CounterBReset, 
    output logic CounterBInc, 
    input logic [1:0] CounterB, 
    output logic CounterCReset, 
    input logic [3:0] CounterC, 
    output logic [5:0] state); 
 
    // WAddr calculation 
    logic [1:0] WOutSel; 
    logic [3:0] WOffset0; 
    logic [3:0] WOffset1; 
    logic [3:0] WOffset2; 
    logic [3:0] WOffset3; 
    logic [3:0] WOffset; 
    assign WOffset0 = 0; 
    assign WOffset1 = 2; 
    assign WOffset2 = 8; 
    assign WOffset3 = 13; 
    mux4 #(4) woffsetmux(WOffset0, WOffset1, WOffse t2, WOffset3, WOutSel, WOffset); 
    assign WAddr = CounterC + WOffset; 
 
    // Debugging 
    /*always @(posedge ph2) 
    begin 
    if(WEn == 1 || SrcB == WOut) begin 
       $display("%d: %d, %b, %d", state, CounterC, WOutSel, WAddr); 
    end 
    end*/ 
 
 
    // State 
    //logic [5:0] state; 
    logic [5:0] nextstate; 
    logic [5:0] stateplusone; 
    assign stateplusone = state + 1; 
 
    // State Register 
    flop #(6) statereg(ph1, ph2, nextstate, state);  
 
    // Next State Logic 
    always_comb 
    begin 
        if(Reset == 1) nextstate = 0; 
        else begin 
        case(state) 
            5:  // Ready 
                if (Hash == 1) nextstate = 57;  // Ready -> Hash 
                else if (Block == 1) nextstate = 6;   // Ready -> Read Block  
                else nextstate = 5;  // Ready -> Re ady 
 
            6:  // Read Block 
                if (CounterA == 15) nextstate = 7;  // Read Block -> Block Init 
                else nextstate = 6;  // Read Block -> Read Block  
 
            12: 
                case (CounterB) 
                    0: nextstate = 13;  // Round In it -> RoundA 
                    1: nextstate = 18;  // Round In it -> RoundB 
                    2: nextstate = 22;  // Round In it -> RoundC 
                    3: nextstate = 29;  // Round In it -> RoundD 
                endcase 
            17: 
                nextstate = 33; // RoundA -> Round Cleanup 
            21: 
                nextstate = 33; // RoundB -> Round Cleanup 
            28: 
                nextstate = 33; // RoundC -> Round Cleanup 
            32: 
                nextstate = 33; // RoundD -> Round Cleanup 
            45: 
                if (CounterA == 19) nextstate = 46;  // MessageExtension -> Next Round Class 
                else nextstate = 12; // MessageExte nsion -> Round Init 
 
            46:  
                if (CounterB == 3) nextstate = 47; // Next Round Class -> Block Cleanup 
                else nextstate = 12; // Next Round Class -> Round Init 
            56: 
                nextstate = 5; // Block Cleanup -> Ready 
            61: 
                nextstate = 5; // Hash -> Ready 
            default: 



                nextstate = stateplusone; 
        endcase 
        end 
    end 
 
    // Output Logic 
    always_comb 
    begin 
        Ready = 0; 
        WOutSel = 2'b00; 
        WEn = 0; 
        RegReadAddr = H0; 
        RegWriteAddr = H0W; 
        RegWrite = 0; 
        TempWrite = 0; 
        SrcB = RegOut; 
        ALUShift = NONE; 
        ALUOp = PASS; 
        CounterAReset = 0; 
        CounterBReset = 0; 
        CounterCReset = 0; 
        CounterAInc = 0; 
        CounterBInc = 0; 
 
        case (state) 
            // Init Chip 
            0:  begin 
                RegReadAddr = AInit; 
                RegWriteAddr = H0W; 
                RegWrite = 1; 
                end 
            1:  begin 
                RegReadAddr = BInit; 
                RegWriteAddr = H1W; 
                RegWrite = 1; 
                end 
            2:  begin 
                RegReadAddr = CInit; 
                RegWriteAddr = H2W; 
                RegWrite = 1; 
                end 
            3:  begin 
                RegReadAddr = DInit; 
                RegWriteAddr = H3W; 
                RegWrite = 1; 
                end 
            4:  begin 
                RegReadAddr = EInit; 
                RegWriteAddr = H4W; 
                RegWrite = 1; 
                end 
 
            // Ready 
            5:  begin 
                CounterAReset = 1; 
                CounterCReset = 1; 
                Ready = 1; 
                end 
 
            // Read Block 
            6:  begin 
                WEn = 1; 
                CounterAInc = 1; 
                Ready = 1; 
                end 
 
            // Block Init 
            7:  begin 
                RegReadAddr = H0; 
                RegWriteAddr = AW; 
                RegWrite = 1; 
                end 
            8:  begin 
                RegReadAddr = H1; 
                RegWriteAddr = BW; 
                RegWrite = 1; 
                end 
            9:  begin 
                RegReadAddr = H2; 
                RegWriteAddr = CW; 
                RegWrite = 1; 



                end 
            10: begin 
                RegReadAddr = H3; 
                RegWriteAddr = DW; 
                RegWrite = 1; 
                end 
            11: begin 
                RegReadAddr = H4; 
                RegWriteAddr = EW; 
                RegWrite = 1; 
                CounterBReset = 1; 
                CounterAReset = 1; 
                end 
 
            // Round Init 
            //12:  
 
            // RoundA 
            13: begin 
                RegReadAddr = D; 
                TempWrite = 1; 
                end 
            14: begin 
                RegReadAddr = C; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            15: begin 
                RegReadAddr = B; 
                TempWrite = 1; 
                ALUOp = AND; 
                end 
            16: begin 
                RegReadAddr = D; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            17: begin 
                RegReadAddr = K1; 
                TempWrite = 1; 
                ALUOp = ADD; 
                end 
 
            // RoundB 
            18: begin 
                RegReadAddr = B; 
                TempWrite = 1; 
                end 
            19: begin 
                RegReadAddr = C; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            20: begin 
                RegReadAddr = D; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            21: begin 
                RegReadAddr = K2; 
                TempWrite = 1; 
                ALUOp = ADD; 
                end 
 
 
            // RoundC 
            22: begin 
                RegReadAddr = C; 
                TempWrite = 1; 
                end 
            23: begin 
                RegReadAddr = D; 
                RegWriteAddr = T2W; 
                RegWrite = 1; 
                ALUOp = AND; 
                end 
            24: begin 
                RegReadAddr = C; 
                TempWrite = 1; 
                end 
            25: begin 



                RegReadAddr = D; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            26: begin 
                RegReadAddr = B; 
                TempWrite = 1; 
                ALUOp = AND; 
                end 
            27: begin 
                RegReadAddr = T2; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            28: begin 
                RegReadAddr = K3; 
                TempWrite = 1; 
                ALUOp = ADD; 
                end 
 
            // RoundD 
            29: begin 
                RegReadAddr = B; 
                TempWrite = 1; 
                end 
            30: begin 
                RegReadAddr = C; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            31: begin 
                RegReadAddr = D; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            32: begin 
                RegReadAddr = K4; 
                TempWrite = 1; 
                ALUOp = ADD; 
                end 
 
            // Round Cleanup 
            33: begin 
                RegReadAddr = E; 
                TempWrite = 1; 
                ALUOp = ADD; 
                end 
            34: begin 
                RegReadAddr = A; 
                TempWrite = 1; 
                ALUOp = ADD; 
                ALUShift = FIVE_B; 
                end 
            35: begin 
                SrcB = WOut; 
                TempWrite = 1; 
                ALUOp = ADD; 
                end 
            36: begin 
                RegReadAddr = D; 
                RegWriteAddr = EW; 
                RegWrite = 1; 
                ALUOp = PASS; 
                end 
            37: begin 
                RegReadAddr = C; 
                RegWriteAddr = DW; 
                RegWrite = 1; 
                ALUOp = PASS; 
                end 
            38: begin 
                RegReadAddr = B; 
                RegWriteAddr = CW; 
                RegWrite = 1; 
                ALUOp = PASS; 
                ALUShift = THIRTY_B; 
                end 
            39: begin 
                RegReadAddr = A; 
                RegWriteAddr = BW; 
                RegWrite = 1; 



                ALUOp = PASS; 
                end 
            40: begin 
                RegReadAddr = ZERO; 
                RegWriteAddr = AW; 
                RegWrite = 1; 
                ALUOp = ADD; 
                end 
 
            // Message Extension 
            41: begin 
                SrcB = WOut; 
                TempWrite = 1; 
                end 
            42: begin 
                WOutSel = 2'b01; 
                SrcB = WOut; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            43: begin 
                WOutSel = 2'b10; 
                SrcB = WOut; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            44: begin 
                WOutSel = 2'b11; 
                SrcB = WOut; 
                TempWrite = 1; 
                ALUOp = XOR; 
                end 
            45: begin 
                RegReadAddr = ZERO; 
                TempWrite = 1; 
                ALUOp = ADD; 
                ALUShift = ONE_A; 
                WEn = 1; 
                CounterAInc = 1; 
                end 
 
            // Next Round Class 
            46: begin 
                CounterBInc = 1; 
                CounterAReset = 1; 
                end 
 
            // Block Cleanup 
            47: begin 
                RegReadAddr = A; 
                TempWrite = 1; 
                end 
            48: begin 
                RegReadAddr = H0; 
                RegWriteAddr = H0W; 
                RegWrite = 1; 
                ALUOp = ADD; 
                end 
            49: begin 
                RegReadAddr = B; 
                TempWrite = 1; 
                end 
            50: begin 
                RegReadAddr = H1; 
                RegWriteAddr = H1W; 
                RegWrite = 1; 
                ALUOp = ADD; 
                end 
            51: begin 
                RegReadAddr = C; 
                TempWrite = 1; 
                end 
            52: begin 
                RegReadAddr = H2; 
                RegWriteAddr = H2W; 
                RegWrite = 1; 
                ALUOp = ADD; 
                end 
            53: begin 
                RegReadAddr = D; 
                TempWrite = 1; 



                end 
            54: begin 
                RegReadAddr = H3; 
                RegWriteAddr = H3W; 
                RegWrite = 1; 
                ALUOp = ADD; 
                end 
            55: begin 
                RegReadAddr = E; 
                TempWrite = 1; 
                end 
            56: begin 
                RegReadAddr = H4; 
                RegWriteAddr = H4W; 
                RegWrite = 1; 
                ALUOp = ADD; 
                end 
 
            // Output Hash 
            57: RegReadAddr = H0; 
            58: RegReadAddr = H1; 
            59: RegReadAddr = H2; 
            60: RegReadAddr = H3; 
            61: RegReadAddr = H4; 
        endcase 
    end 
 
endmodule 
 
 
// 
// Counter/Adder Bank 
// Since the three counters never need to be reset or 
// incremented at the same time, share the adder lo gic. 
// Also share adder logic with WAddr calculation. 
// 
//module counterAdderBank 
//   (input logic ph1, ph2, 
//    input logic inc, reset, 
//    input logic [1:0] counterSel 
//    input logic [1:0] WOutSel, 
//    output logic [4:0] counterOut); 
// 
//    input logic [4:0] ca, cb, cc, counter; 
//    assign cb[4:2] = 0; 
//    assign cc[4] = 0; 
// 
//    mux3 #(5) (ca, cb, cc, counterSel, counter); 
// 
//    assign counterOut = 1 + counter; 
// 
//   flopen #(5) counterareg(ph1, ph2, ~(counterSel [0] | counterSel[1]), counterOut, ca); 
//    flopen #(2) counterbreg(ph1, ph2, counterSel[ 0], counterOut, cb[1:0]); 
//    flopen #(4) countercreg(ph1, ph2, counterSel[ 1], counterOut, cc[3:0]); 
// 
//endmodule 
 
module counter #(parameter WIDTH = 8) 
    (input logic ph1, ph2, 
     input logic reset, 
     input logic en, 
     output logic [WIDTH-1:0] y); 
 
     logic [WIDTH-1:0] yplusone; 
     assign yplusone = y + 1; 
 
     flopenr #(WIDTH) counterreg(ph1, ph2, reset, e n, yplusone, y); 
endmodule 
 
module datapath 
  #(parameter WIDTH = 32)  
   (input logic ph1, 
    input logic ph2, 
    input logic [3:0] WAddr, 
    input logic WEn, 
    input logic [4:0] RegReadAddr, 
    input logic [3:0] RegWriteAddr, 
    input logic RegWriteEn, 
    input logic TempWrite, 
    input logic SrcB, 
    input logic [1:0] ALUshift, 



    input logic [1:0] ALUop, 
    input logic IOSel, 
    inout [WIDTH-1:0] io); 
 
    logic [WIDTH-1:0] A; 
    logic [WIDTH-1:0] B; 
    logic [WIDTH-1:0] Wout; 
    logic [WIDTH-1:0] RegOut; 
    logic [WIDTH-1:0] ALUresult; 
    logic [WIDTH-1:0] WriteData; 
 
    //instantiate modules 
    mux2 #(WIDTH) Bsource (RegOut, Wout, SrcB, B); 
    flopen #(WIDTH) t1reg(ph1, ph2, TempWrite, Writ eData, A); 
    FinalAlu #(WIDTH) alu (A, B, ALUshift, ALUop, A LUresult); 
    SRAM16 #(WIDTH) wmem (ph1, ph2, WAddr, WEn, Wri teData, Wout); 
    MemConstBank #(WIDTH) bank (RegReadAddr, RegWri teAddr, RegWriteEn, WriteData, ph1, ph2, 
RegOut); 
    ioselector #(WIDTH) ioselect (ALUresult, IOSel,  WriteData, io); 
   
endmodule 
 
 
// Input Output Selector 
module ioselector 
  #(parameter WIDTH = 8) 
   (input logic [WIDTH-1:0] ValueIn, 
    input logic IOSel, 
    output logic [WIDTH-1:0] ValueOut, 
    inout [WIDTH-1:0] IO); 
 
    mux2 #(WIDTH) wdmux (ValueIn, IO, IOSel, ValueO ut); 
    tristate  #(WIDTH) iotri (ValueIn, ~IOSel, IO);  
endmodule 
 
 
module tristate 
  #(parameter WIDTH = 8) 
   (input logic [WIDTH-1:0] in, 
    input logic en, 
    output logic [WIDTH-1:0] out); 
 
    assign out = en ? in : {(WIDTH){1'bz}}; 
endmodule 
 
 
// SRAM Module for Message State, 16 Words 
module SRAM16 
  #(parameter WIDTH = 8) 
   (input ph1, input ph2, 
    input [3:0] Addr, 
    input WriteEn, 
    input [WIDTH-1:0] DataIn, 
    output logic [WIDTH-1:0] DataOut); 
 
    logic [WIDTH-1:0] RAM [15:0]; 
 
    always @ ( * ) 
         if(ph2 & WriteEn) RAM[Addr] <= DataIn; 
 
    assign DataOut = RAM[Addr]; 
endmodule 
 
//This module stores words and provides words and c onstants as needed 
//These are the addresses of the variables used in the algorithm 
//They are only 4 bits since they are used by RegWr iteAddr, which is also 4 bits 
//When used by RegReadAddr as a 5-bit number, they will have a 0 padded onto the front 
module MemConstBank 
  #(parameter WIDTH = 8) 
   (input [4:0] RegReadAddr, 
    input [3:0] RegWriteAddr, 
    input RegWriteEn, 
    input [WIDTH-1:0] RegIn, 
    input ph1, input ph2, 
    output logic [WIDTH-1:0] RegOut); 
 
 
     
 
    logic [WIDTH-1:0] ROM [9:0]; 
 



    assign ROM[0] = 32'h67452301; 
    assign ROM[1] = 32'hEFCDAB89; 
    assign ROM[2] = 32'h98BADCFE; 
    assign ROM[3] = 32'h10325476; 
    assign ROM[4] = 32'hC3D2E1F0; 
    assign ROM[5] = 32'h5A827999; 
    assign ROM[6] = 32'h6ED9EBA1; 
    assign ROM[7] = 32'h8F1BBCDC; 
    assign ROM[8] = 32'hCA62C1D6; 
    assign ROM[9] = 32'b0; 
 
    // Flop for ram sequencing 
    logic [WIDTH-1:0] RegInSeq; 
    flop #(WIDTH) seq(ph2, ph1, RegIn, RegInSeq); 
 
    logic [WIDTH-1:0] RamData; 
    SRAM11 #(WIDTH) ram(ph1, ph2, RegReadAddr[3:0],  RegWriteAddr, RegWriteEn, RegInSeq, RamData); 
 
    //always @(*) 
    //    if (ph2 & RegWriteEn) RAM[RegWriteAddr] < = RegInSeq; 
 
    assign RegOut = RegReadAddr[4] ? ROM[RegReadAdd r[3:0]] : RamData; 
endmodule 
 
 
// SRAM Module for Message State, 16 Words 
module SRAM11 
  #(parameter WIDTH = 8) 
   (input ph1, input ph2, 
    input [3:0] RAddr, 
    input [3:0] WAddr, 
    input WriteEn, 
    input [WIDTH-1:0] DataIn, 
    output logic [WIDTH-1:0] DataOut); 
 
    logic [WIDTH-1:0] RAM [10:0]; 
 
    always @(negedge ph2) 
        if (WriteEn) RAM[WAddr] <= DataIn; 
 
    assign DataOut = RAM[RAddr]; 
endmodule 
 
 
 
/*This is the ALU used for the SHA algorithm 
 It can left-circular shift the "A" input by 0, 5, or 6 places, 
 and can left-circular shift the "B" input by 0 or 1 places 
 It can AND, XOR, or sum the shifted A and B, or it  can directly pass 
 the shifted B 
 This was implemented using NAND, XNOR, an inverted  sum, and an inverter, 
 with the output chosen by an inverting mux, to bet ter reflect what the final 
 chip will look like 
*/ 
module FinalAlu 
  #(parameter WIDTH = 8) 
   (input [WIDTH-1:0] A, input [WIDTH-1:0] B, 
    output [1:0] ALUrot, input [1:0] ALUop, 
    output reg [WIDTH-1:0] Y); 
 
    logic [WIDTH-1:0] Arot1; 
    logic [WIDTH-1:0] Brot5; 
    logic [WIDTH-1:0] BrotWMinus2; 
    logic [WIDTH-1:0] Arot; 
    logic [WIDTH-1:0] Brot; 
    logic [WIDTH-1:0] OpNand; 
    logic [WIDTH-1:0] OpXNOR; 
    logic [WIDTH-1:0] OpAdd; 
    logic [WIDTH-1:0] OpPass; 
    logic [WIDTH-1:0] OpNandAdd; 
    logic [WIDTH-1:0] OpXNORPass;    
 
    // Rotation functionality for A and B 
    rotl1 #(WIDTH) arot1(A, Arot1); 
    rotl5 #(WIDTH) brot5(B, Brot5); 
    rotr2 #(WIDTH) brot1(B, BrotWMinus2); 
    mux2 #(WIDTH) arotmux(A, Arot1, ALUrot[0] & ALU rot[1], Arot); 
    mux4 #(WIDTH) brotmux(B, Brot5, BrotWMinus2, B,  ALUrot, Brot); 
 
    //These are the functions that the ALU can perf orm on the inputs 
    //They are inverted to better match how the fin al implementation will perform 



    assign OpNand = ~(Arot & Brot); 
    assign OpXNOR = ~(Arot ^ Brot); 
    assign OpAdd  = ~(Arot + Brot); 
    assign OpPass = ~Brot; 
 
    // Output selector mux 
    mux2inv #(WIDTH) outmux1(OpAdd, OpNand, ALUop[0 ], OpNandAdd); 
    mux2inv #(WIDTH) outmux2(OpPass, OpXNOR, ALUop[ 0], OpXNORPass); 
    mux2 #(WIDTH) outmux3(OpXNORPass, OpNandAdd, AL Uop[1], Y); 
endmodule 
 
// 
// Circular rotation modules 
// 
module rotl1 
  #(parameter WIDTH = 8) 
   (input logic [WIDTH-1:0] a, 
    output logic [WIDTH-1:0] y); 
 
    assign y[WIDTH-1:1] = a[WIDTH-2:0]; 
    assign y[0] = a[WIDTH-1]; 
endmodule 
 
module rotl5 
  #(parameter WIDTH = 8) 
   (input logic [WIDTH-1:0] a, 
    output logic [WIDTH-1:0] y); 
 
    assign y[4:0] = a[WIDTH-1:WIDTH-5]; 
    assign y[WIDTH-1:5] = a[WIDTH-6:0]; 
endmodule 
 
module rotr2 
  #(parameter WIDTH = 8) 
   (input logic [WIDTH-1:0] a, 
    output logic [WIDTH-1:0] y); 
 
    assign y[WIDTH-1:WIDTH-2] = a[1:0]; 
    assign y[WIDTH-3:0] = a[WIDTH-1:2]; 
endmodule 
 
 
// 
// Memory Elements 
// 
module flop #(parameter WIDTH = 8) 
             (input  logic             ph1, ph2,  
              input  logic [WIDTH-1:0] d,  
              output logic [WIDTH-1:0] q); 
 
  logic [WIDTH-1:0] mid; 
 
  latch #(WIDTH) master(ph2, d, mid); 
  latch #(WIDTH) slave(ph1, mid, q); 
endmodule 
 
 
module flopenr #(parameter WIDTH = 8) 
                (input  logic             ph1, ph2,  reset, en, 
                 input  logic [WIDTH-1:0] d,  
                 output logic [WIDTH-1:0] q); 
  
  logic [WIDTH-1:0] d2, resetval; 
 
  assign resetval = 0; 
 
  mux3 #(WIDTH) enrmux(q, d, resetval, {reset, en},  d2); 
  flop #(WIDTH) f(ph1, ph2, d2, q); 
endmodule 
 
module flopen #(parameter WIDTH = 8) 
                (input  logic             ph1, ph2,  en, 
                 input  logic [WIDTH-1:0] d,  
                 output logic [WIDTH-1:0] q); 
  
  logic [WIDTH-1:0] d2; 
 
  mux2 #(WIDTH) enrmux(q, d, en, d2); 
  flop #(WIDTH) f(ph1, ph2, d2, q); 
endmodule 
 



 
module latch #(parameter WIDTH = 8) 
              (input  logic             ph,  
               input  logic [WIDTH-1:0] d,  
               output logic [WIDTH-1:0] q); 
 
  always_latch 
    if (ph) q <= d; 
endmodule 
 
 
// 
// Muxes 
// 
module mux2inv #(parameter WIDTH = 8) 
                (input logic [WIDTH-1:0] d0, 
                 input logic [WIDTH-1:0] d1, 
                 input logic s, 
                 output logic [WIDTH-1:0] y); 
    assign y = ~(s ? d1: d0); 
endmodule 
 
module mux2 #(parameter WIDTH = 8) 
                (input logic [WIDTH-1:0] d0, 
                 input logic [WIDTH-1:0] d1, 
                 input logic s, 
                 output logic [WIDTH-1:0] y); 
    assign y = (s ? d1: d0); 
endmodule 
 
module mux3 #(parameter WIDTH = 8) 
             (input  logic [WIDTH-1:0] d0, d1, d2, 
              input  logic [1:0]       s,  
              output logic [WIDTH-1:0] y); 
 
  always_comb  
    casez (s) 
      2'b00: y = d0; 
      2'b01: y = d1; 
      2'b1?: y = d2; 
    endcase 
endmodule 
 
module mux4 #(parameter WIDTH = 8) 
             (input  logic [WIDTH-1:0] d0, d1, d2, d3, 
              input  logic [1:0]       s,  
              output logic [WIDTH-1:0] y); 
 
  always_comb 
    case (s) 
      2'b00: y = d0; 
      2'b01: y = d1; 
      2'b10: y = d2; 
      2'b11: y = d3; 
    endcase 
endmodule 
 
module SHA1 #(parameter WIDTH = 32) 
             (input ph1, ph2, Reset, Block, Hash, 
              inout [WIDTH-1:0] io, 
              output Ready); 
 
    // Datapath Control 
    logic [3:0] WAddr; 
    logic WEn; 
    regreadaddr RegReadAddr; 
    regwriteaddr RegWriteAddr; 
    logic RegWrite; 
    logic TempWrite; 
    srcb SrcB; 
    alushift ALUShift; 
    aluop ALUOp; 
 
    // Counter Control 
    logic CounterAReset; 
    logic CounterBReset; 
    logic CounterCReset; 
    logic CounterAInc; 
    ///logic CounterBInc; 
    logic [4:0] CounterA; 
    logic [1:0] CounterB; 



    logic [3:0] CounterC; 
 
    // Debug Out 
    logic [5:0] state; 
 
    controller ctrl( 
        ph1, ph2, Reset, Block, Hash, Ready, WAddr,  
        WEn, RegReadAddr, RegWriteAddr, RegWrite, T empWrite, 
        SrcB, ALUShift, ALUOp, CounterAReset, Count erAInc, CounterA, 
        CounterBReset, CounterBInc, CounterB, Count erCReset, CounterC, 
        state); 
 
    counter #(5) counter5(ph1, ph2, CounterAReset, CounterAInc, CounterA); 
    counter #(2) counter2(ph1, ph2, CounterBReset, CounterBInc, CounterB); 
    counter #(4) counter4(ph1, ph2, CounterCReset, WEn, CounterC); 
 
    datapath #(WIDTH) dp(ph1, ph2, WAddr, WEn, RegR eadAddr, RegWriteAddr, RegWrite, 
      TempWrite, SrcB, ALUShift, ALUOp, Ready, io);  
 
endmodule 
 
module testbench(); 
    // Clock 
    logic ph1, ph2; 
 
    // Chip Inputs 
    logic Block, Hash, Reset; 
    logic [31:0] DataIn; 
    // Chip Outputs 
    logic Ready; 
    // ChipIO 
    tri [31:0] DataIO; 
    assign DataIO = Ready ? DataIn: 32'bz; 
    SHA1 #(32) dut(ph1, ph2, Reset, Block, Hash, Da taIO, Ready); 
 
    // TV 
    logic [2:0] testState; 
    logic [10:0] vectornum; 
    logic [31:0] TestVectors[100:0]; 
    logic [31:0] HashOut[4:0]; 
 
    assign TestVectors[0] = 32'h8A921FC4; 
    assign TestVectors[1] = 32'h452C45D2; 
    assign TestVectors[2] = 32'hABC243FE; 
    assign TestVectors[3] = 32'hEC429CBD; 
    assign TestVectors[4] = 32'h452C45D2; 
    assign TestVectors[5] = 32'hEC429CBD; 
    assign TestVectors[6] = 32'h452C45D2; 
    assign TestVectors[7] = 32'hEC429CBD; 
    assign TestVectors[8] = 32'h8A921FC4; 
    assign TestVectors[9] = 32'h452C45D2; 
    assign TestVectors[10] = 32'hABC243FE; 
    assign TestVectors[11] = 32'h452C45D2; 
    assign TestVectors[12] = 32'hEC429CBD; 
    assign TestVectors[13] = 32'h452C45D2; 
    assign TestVectors[14] = 32'h8A921FC4; 
    assign TestVectors[15] = 32'h452C45D2; 
 
    assign TestVectors[16] = 32'hFC258E41; 
    assign TestVectors[17] = 32'hDFE90802; 
    assign TestVectors[18] = 32'h64C65A1F; 
    assign TestVectors[19] = 32'hDCB36023; 
    assign TestVectors[20] = 32'h9FAEA24E; 
   
 
    // generate clock to sequence tests 
    always 
    begin 
        ph1 <= 0; ph2 <= 0; #1;  
        ph1 <= 1; # 4;  
        ph1 <= 0; #1; 
        ph2 <= 1; # 4; 
    end 
 
    // Init chip 
    initial begin 
        //$readmemb("ctrl.tv", testvectors); // loa d test vectors 
        testState = 0; 
        Reset = 1; #17; Reset = 0; // come out of r eset before cycle 2 
        Block = 0; 
        Hash = 0; 



        DataIn = 0; 
    end 
 
    // Check results on ph2 
    always @(posedge ph2) begin 
        if(Hash && Ready) begin 
            // Verify Hash 
            if(HashOut[0] !== TestVectors[16] || 
               HashOut[1] !== TestVectors[17] || 
               HashOut[2] !== TestVectors[18] || 
               HashOut[3] !== TestVectors[19] || 
               HashOut[4] !== TestVectors[20]) begi n 
                $display("ERROR:"); 
                $display("EXPECTED: %H %H %H %H %H" , TestVectors[16], TestVectors[17],  
                         TestVectors[18], TestVecto rs[19], TestVectors[20]); 
            end 
 
            $display("HASHOUT:  %H %H %H %H %H", Ha shOut[0], HashOut[1],  
                     HashOut[2], HashOut[3], HashOu t[4]); 
            $finish; 
        end 
 
        if(testState == 0) begin // wait for init 
            if(Ready == 1) begin 
                testState = 1; 
                vectornum = 0; 
                Block = 1; 
            end 
        end 
        else if(testState == 1) begin // input msg block 
            if(vectornum > 15) begin 
                testState = 2; 
            end 
            vectornum += 1;  
        end 
        else if(testState == 2) begin // wait for h ash result 
            if(Ready == 1) begin 
                Block = 0; 
                Hash = 1; 
                testState = 3; 
                vectornum = 0; 
            end 
        end 
        else if(testState == 3) begin // output has h data 
            HashOut[vectornum] = DataIO; 
            vectornum += 1; 
            //$display("%h", DataIO); 
        end 
    end 
 
    // Load data on ph1 
    always @(posedge ph1) begin 
        if(testState == 1) DataIn = TestVectors[vec tornum]; 
    end 
   
endmodule 



Appendix B (Schematics and Layout of Custom Cells) 
 

Library Cell Name Notes 

sha1 controller_fsm_synth Layout only, schematic synthesized. 

sha1 core Layout not routed. 

sha1 counter_bank 

sha1 counter_cell 

sha1 counter_zipper 

sha1 counter5 

sha1 datapath Layout does not LVS. 

sha1 flopen_dp 

sha1 flopen32_dp 

sha1 flopr 

sha1 halfadder_dp 

sha1 inv_dp 

sha1 ioselect 

sha1 memconstbank 

sha1 mux2_32 

sha1 mux2_dp 

sha1 nand4_1x 

sha1 rom_bitcond 

sha1 rom_bitcond32 

sha1 rom_one 

sha1 rom_word0 

sha1 rom_word1 

sha1 rom_word2 

sha1 rom_word3 

sha1 rom_word4 

sha1 rom_word5 

sha1 rom_word6 

sha1 rom_word7 

sha1 rom_word8 

sha1 rom_zero Layout only, schematic empty. 

sha1 sram_cell 

sha1 sram11_addrbuf 

sha1 sram11_word 

sha1 sram11_zipper 

sha1 sram11rom 

sha1 sram16 

sha1 sram16_addrbuf 

sha1 sram16_word 

sha1 sram16_zipper 

sha1 tristate 

sha1 xor2 

sha1_alu alu 



sha1_alu invadder_32 

sha1_alu invfulladder 

sha1_alu invmux2_32 

sha1_alu invmux2_dp 

sha1_alu nand2_1x 

sha1_alu nand2_32x 

sha1_alu shift_a 

sha1_alu shift_b 

sha1_alu xnor2 

sha1_alu xnor2_32x 
 



sha1.counter_bank 

  



 
 



sha1.counter_cell 

  



 
 



sha1.counter_zipper 

  



 
 



sha1.counter5 

  



 

  



sha1_alu.alu 

  



  



sha1_alu.invadder_32 

  



  



sha1_alu.invfulladder 

  



 
 



sha1_alu.invmux2_32 

  



  



sha1_alu.invmux2_dp 

  



  



sha1_alu.nand2_1x 

 

  



  



sha1_alu.nand2_32x 

  



  



sha1_alu.shift_a 

  



  



sha1_alu.shift_b 

  



  



sha1_alu.xnor2 

  



  



sha1_alu.xnor2_32x 

  



 



sha1.flopen_dp 

  



 
 



sha1.flopen32_dp 

  



  



sha1.flopr 

  



 
 



sha1.halfadder_dp 

  



  



sha1.inv_dp 

  



  



sha1.ioselect 

  



  



sha1.memconstbank 

  



  



sha1.mux2_32 

  



  



sha1.mux2_dp 

  



  



sha1.nand4_1x 

  



  



sha1.rom_bitcond 

  



  



sha1.rom_bitcond32 

  



  



sha1.rom_one 

  



  



sha1.rom_word0 

  



  



sha1.rom_word1 

  



  



sha1.rom_word2 

  



  



sha1.rom_word3 

  



  



sha1.rom_word4 

  



  



sha1.rom_word5 

  



  



sha1.rom_word6 

  



  



sha1.rom_word7 

  



  



sha1.rom_word8 

  



  



sha1.rom_zero 

  



sha1.sram_cell 

  



 
 



sha1.sram11_addrbuf 

  



  



sha1.sram11_word 

  



  



sha1.sram11_zipper 

  



  



sha1.sram11rom 

  



  



sha1.sram16 

  



  



sha1.sram16_addrbuf 

  



  



sha1.sram16_word 

  



  



sha1.sram16_zipper 

  



  



sha1.tristate 

  



  



sha1.xor 

  



 



sha1_alu.alu 

  



  



sha1_alu.invadder_32 

  



  



sha1_alu.invfulladder 

  



 
 



sha1_alu.invmux2_32 

  



  



sha1_alu.invmux2_dp 

  



  



sha1_alu.nand2_1x 

 

  



  



sha1_alu.nand2_32x 

  



  



sha1_alu.shift_a 

  



  



sha1_alu.shift_b 

  



  



sha1_alu.xnor2 

  



  



sha1_alu.xnor2_32x 

  



 



Appendix C (SHA-1 Pseduocode) 

Initialize variables:  
h0 = 0x67452301 
h1 = 0xEFCDAB89 
h2 = 0x98BADCFE 
h3 = 0x10325476 
h4 = 0xC3D2E1F0 
 
Pre-processing:  
append the bit '1' to the message 
append 0 ≤ k < 512 bits '0', so that the resulting message le ngth (in bits ) 
   is congruent  to 448 ≡ −64 (mod 512) 
append length of message (before pre-processing), i n bits , as 64-bit big-endian  integer 
 
Process the message in successive 512-bit chunks:  
break message into 512-bit chunks 
for each chunk 
    break chunk into sixteen 32-bit big-endian word s w[i], 0 ≤ i ≤ 15 
 
    Extend the sixteen 32-bit words into eighty 32-bit words:  
    for i from 16 to 79 
        w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1 
 
    Initialize hash value for this chunk:  
    a = h0 
    b = h1 
    c = h2 
    d = h3 
    e = h4 
 
    Main loop:  
    for i from 0 to 79 
        if 0 ≤ i ≤ 19 then 
            f = (b and c) xor (( not b) and d) 
            k = 0x5A827999 
        else if 20 ≤ i ≤ 39 
            f = b xor c xor d 
            k = 0x6ED9EBA1 
        else if 40 ≤ i ≤ 59 
            f = (b and c) xor (b and d) xor (c and d) 
            k = 0x8F1BBCDC 
        else if 60 ≤ i ≤ 79 
            f = b xor c xor d 
            k = 0xCA62C1D6 
 
        temp = (a leftrotate 5) + f + e + k + w[i] 
        e = d 
        d = c 
        c = b leftrotate 30 
        b = a 
        a = temp 
 
    Add this chunk's hash to result so far:  
    h0 = h0 + a 
    h1 = h1 + b  
    h2 = h2 + c 
    h3 = h3 + d 
    h4 = h4 + e 
 
Produce the final hash value (big-endian):  
digest = hash = h0 append h1 append h2 append h3 append h4 

 

 

Source: http://en.wikipedia.org/wiki/Sha1, accessed 4/19/2010. 



Appendix D (Test Bench Generator) 

C# code used to calculate the state of all registers for each round of the SHA1 algorithm as the chip 

implements it.  Used to debug the Verilog implementation of the chip and to generate test benches. 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace SHATest { 
    class Program { 
 
        static UInt32 RotateLeft(UInt32 x, int num) { 
            for (; num > 0; num--) { 
                UInt32 temp = (x >> 31) & 0x00000001; 
                x = (x << 1) | temp; 
            } 
            return x; 
        } 
 
        enum OP { 
            PASS, 
            ADD, 
            AND, 
            XOR 
        } 
 
        enum LROT : int { 
            NONE = 0, 
            ONE_A = 1, 
            FIVE_B = 5, 
            THIRTY_B = 30 
        } 
 
        static UInt32 ALU(UInt32 a, UInt32 b, OP op, LROT lrot) { 
             
            if(lrot == LROT.FIVE_B || lrot == LROT.THIRTY_B) 
                b = RotateLeft(b, (int)lrot); 
            if (lrot == LROT.ONE_A) 
                a = RotateLeft(a, (int)lrot); 
 
            switch (op) { 
                case OP.ADD: 
                    return a + b; 
                case OP.XOR: 
                    return a ^ b; 
                case OP.PASS: 
                    return b; 
                case OP.AND: 
                    return a & b; 
            } 
            return 0; 
        } 
 
        static void Main(string[] args) { 
 
            // Memory 
            UInt32[] W = new UInt32[16]; 
            UInt32 A = 0, B = 0, C = 0, D = 0, E = 0, t2 = 0; 
            UInt32 H0 = 0, H1 = 0, H2 = 0, H3 = 0, H4 = 0; 
            UInt32 t1 = 0; 
 
            UInt32 NULL = 0; 
 
            // Constants 
            UInt32 Zero = 0; 
            UInt32 AInit = 0x67452301; 
            UInt32 BInit = 0xEFCDAB89; 



            UInt32 CInit = 0x98BADCFE; 
            UInt32 DInit = 0x10325476; 
            UInt32 EInit = 0xC3D2E1F0; 
            UInt32 K1 = 0x5A827999; 
            UInt32 K2 = 0x6ED9EBA1; 
            UInt32 K3 = 0x8F1BBCDC; 
            UInt32 K4 = 0xCA62C1D6; 
 
            // Initilize 
            //for (int i = 0; i < 16; i++) W[i] = 0xFFFFFFFF; 
            //W[0] = 0x80000000; 
            //for (int i = 1; i < 14; i++) W[i] = 0; 
            //W[14] = 0; 
            //W[15] = 0; 
             
            W[0] = 0x8A921FC4; 
            W[1] = 0x452C45D2; 
            W[2] = 0xABC243FE; 
            W[3] = 0xEC429CBD; 
            W[4] = 0x452C45D2; 
            W[5] = 0xEC429CBD; 
            W[6] = 0x452C45D2; 
            W[7] = 0xEC429CBD; 
            W[8] = 0x8A921FC4; 
            W[9] = 0x452C45D2; 
            W[10] = 0xABC243FE; 
            W[11] = 0x452C45D2; 
            W[12] = 0xEC429CBD; 
            W[13] = 0x452C45D2; 
            W[14] = 0x8A921FC4; 
            W[15] = 0x452C45D2; 
 
            //for (int i = 0; i < 16; i++) W[i] = 0x8A921FC4; 
 
            H0 = AInit; 
            H1 = BInit; 
            H2 = CInit; 
            H3 = DInit; 
            H4 = EInit; 
 
            A = H0; 
            B = H1; 
            C = H2; 
            D = H3; 
            E = H4; 
 
            for (int i = 0; i < 80; i++) { 
                // Crypto 
                // 
                 
 
 
                //Calc f 
                if (i >= 0 && i < 20) { 
                    //F = (B & C) ^ (~B & D); 
                    t1 = ALU(NULL, D, OP.PASS, LROT.NONE); 
                    t1 = ALU(t1, C, OP.XOR, LROT.NONE); 
                    t1 = ALU(t1, B, OP.AND, LROT.NONE); 
                    t1 = ALU(t1, D, OP.XOR, LROT.NONE); 
 
                    t1 = ALU(t1, K1, OP.ADD, LROT.NONE); 
                } else if (i >= 20 && i < 40) { 
                    // F = B ^ C ^ D 
                    t1 = ALU(NULL, B, OP.PASS, LROT.NONE); 
                    t1 = ALU(t1, C, OP.XOR, LROT.NONE); 
                    t1 = ALU(t1, D, OP.XOR, LROT.NONE); 
 
                    t1 = ALU(t1, K2, OP.ADD, LROT.NONE); 
                } else if (i >= 40 && i < 60) { 
                    //F = (B & C) ^ (B & D) ^ (C & D); 
                    t1 = ALU(NULL, C, OP.PASS, LROT.NONE); 



                    t2 = ALU(t1, D, OP.AND, LROT.NONE); 
                    t1 = ALU(NULL, C, OP.PASS, LROT.NONE); 
                    t1 = ALU(t1, D, OP.XOR, LROT.NONE); 
                    t1 = ALU(t1, B, OP.AND, LROT.NONE); 
                    t1 = ALU(t1, t2, OP.XOR, LROT.NONE); 
 
                    t1 = ALU(t1, K3, OP.ADD, LROT.NONE); 
                } else if (i >= 60 && i < 80) { 
                    // F = B ^ C ^ D 
                    t1 = ALU(NULL, B, OP.PASS, LROT.NONE); 
                    t1 = ALU(t1, C, OP.XOR, LROT.NONE); 
                    t1 = ALU(t1, D, OP.XOR, LROT.NONE); 
 
                    t1 = ALU(t1, K4, OP.ADD, LROT.NONE); //(C & D) + (B & (C # D)) 
                } 
 
                t1 = ALU(t1, E, OP.ADD, LROT.NONE); 
                t1 = ALU(t1, A, OP.ADD, LROT.FIVE_B); 
                t1 = ALU(t1, W[0], OP.ADD, LROT.NONE); 
 
                // New state 
 
 
                E = ALU(NULL, D, OP.PASS, LROT.NONE); 
                D = ALU(NULL, C, OP.PASS, LROT.NONE); 
                C = ALU(NULL, B, OP.PASS, LROT.THIRTY_B); 
                B = ALU(NULL, A, OP.PASS, LROT.NONE); 
                A = ALU(t1, Zero, OP.ADD, LROT.NONE); // Pass A 
 
                string aa = String.Format("{0:X8}", A); 
                string bb = String.Format("{0:X8}", B); 
                string cc = String.Format("{0:X8}", C); 
                string dd = String.Format("{0:X8}", D); 
                string ee = String.Format("{0:X8}", E); 
 
                //Console.WriteLine(aa + " " + bb + " " + cc + " " + dd + " " + ee); 
                 
                // Message Extension 
                // 
                t1 = ALU(NULL, W[0], OP.PASS, LROT.NONE); 
                t1 = ALU(t1, W[2], OP.XOR, LROT.NONE); 
                t1 = ALU(t1, W[8], OP.XOR, LROT.NONE); 
                t1 = ALU(t1, W[13], OP.XOR, LROT.NONE); 
                t1 = ALU(t1, Zero, OP.ADD, LROT.ONE_A); 
 
                // Downshift W 
                for (int j = 0; j < 15; j++) { 
                    W[j] = W[j + 1]; 
                } 
                W[15] = t1; 
            } 
 
            t1 = ALU(NULL, A, OP.PASS, LROT.NONE); 
            H0 = ALU(t1, H0, OP.ADD, LROT.NONE); 
 
            t1 = ALU(NULL, B, OP.PASS, LROT.NONE); 
            H1 = ALU(t1, H1, OP.ADD, LROT.NONE); 
 
            t1 = ALU(NULL, C, OP.PASS, LROT.NONE); 
            H2 = ALU(t1, H2, OP.ADD, LROT.NONE); 
 
            t1 = ALU(NULL, D, OP.PASS, LROT.NONE); 
            H3 = ALU(t1, H3, OP.ADD, LROT.NONE); 
 
            t1 = ALU(NULL, E, OP.PASS, LROT.NONE); 
            H4 = ALU(t1, H4, OP.ADD, LROT.NONE); 
 
            string Ahex = String.Format("{0:X8}", H0); 
            string Bhex = String.Format("{0:X8}", H1); 
            string Chex = String.Format("{0:X8}", H2); 
            string Dhex = String.Format("{0:X8}", H3); 



            string Ehex = String.Format("{0:X8}", H4); 
 
            Console.WriteLine(""); 
            Console.WriteLine(Ahex + " " + Bhex + " " + Chex + " " + Dhex + " " + Ehex); 
            //Console.WriteLine("da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709".ToUpper()); 
 
            Console.ReadKey(); 
        } 
    } 
} 
 


	VLSI Report Final
	All Apendix

