
Lecture 10: 
Circuit 
Families



10: Circuit Families 2CMOS VLSI DesignCMOS VLSI Design 4th Ed.

Outline
Pseudo-nMOS Logic
Dynamic Logic
Pass Transistor Logic
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Introduction
What makes a circuit fast?
– I = C dV/dt ->  tpd ∝ (C/I) ΔV
– low capacitance
– high current
– small swing

Logical effort is proportional to C/I
pMOS are the enemy!
– High capacitance for a given current

Can we take the pMOS capacitance off the input?
Various circuit families try to do this…
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Pseudo-nMOS
In the old days, nMOS processes had no pMOS
– Instead, use pull-up transistor that is always ON

In CMOS, use a pMOS that is always ON
– Ratio issue
– Make pMOS about ¼ effective strength of 

pulldown network
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Pseudo-nMOS Gates
Design for unit current on output
to compare with unit inverter.
pMOS fights nMOS
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Pseudo-nMOS Gates
Design for unit current on output
to compare with unit inverter.
pMOS fights nMOS
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Pseudo-nMOS Design
Ex: Design a k-input AND gate using pseudo-nMOS.  
Estimate the delay driving a fanout of H

G = 1 * 8/9 = 8/9
F = GBH = 8H/9
P = 1 + (4+8k)/9 = (8k+13)/9
N = 2
D = NF1/N + P = 
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Pseudo-nMOS Power
Pseudo-nMOS draws power whenever Y = 0
– Called static power     P = IDDVDD

– A few mA / gate * 1M gates would be a problem
– Explains why nMOS went extinct

Use pseudo-nMOS sparingly for wide NORs
Turn off pMOS when not in use
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Ratio Example
The chip contains a 32 word x 48 bit ROM
– Uses pseudo-nMOS decoder and bitline pullups
– On average, one wordline and 24 bitlines are high

Find static power drawn by the ROM 
– Ion-p = 36 μA

Solution:
pull-up pull-up

static pull-up

36 μW

(31 24) 1.98 mW
DDP V I

P P

= =

= + =
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Dynamic Logic
Dynamic gates uses a clocked pMOS pullup
Two modes: precharge and evaluate
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The Foot
What if pulldown network is ON during precharge?
Use series evaluation transistor to prevent fight.
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Logical Effort
Inverter NAND2 NOR2
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Monotonicity
Dynamic gates require monotonically rising inputs 
during evaluation
– 0 -> 0
– 0 -> 1
– 1 -> 1
– But not 1 -> 0
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Monotonicity Woes
But dynamic gates produce 
monotonically falling 
outputs during evaluation
Illegal for one dynamic gate 
to drive another!

A X

φ Y
φ Precharge Evaluate
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Domino Gates
Follow dynamic stage with inverting static gate
– Dynamic / static pair is called domino gate
– Produces monotonic outputs
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Domino Optimizations
Each domino gate triggers next one, like a string of 
dominos toppling over
Gates evaluate sequentially but precharge in parallel
Thus evaluation is more critical than precharge
HI-skewed static stages can perform logic
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Dual-Rail Domino
Domino only performs noninverting functions:
– AND, OR but not NAND, NOR, or XOR

Dual-rail domino solves this problem
– Takes true and complementary inputs 
– Produces true and complementary outputs
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Example: AND/NAND
Given A_h, A_l, B_h, B_l
Compute Y_h = AB, Y_l = AB
Pulldown networks are conduction complements

Y_hφ

φ

Y_l
A_h

B_hB_lA_l

= A*B= A*B
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Example: XOR/XNOR
Sometimes possible to share transistors

Y_hφ

φ

Y_l
A_l

B_h

= A xor B

B_l

A_hA_lA_h= A xnor B
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Leakage
Dynamic node floats high during evaluation
– Transistors are leaky (IOFF ≠ 0)
– Dynamic value will leak away over time
– Formerly miliseconds, now nanoseconds

Use keeper to hold dynamic node
– Must be weak enough not to fight evaluation
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Charge Sharing
Dynamic gates suffer from charge sharing
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Secondary Precharge
Solution: add secondary precharge transistors
– Typically need to precharge every other node

Big load capacitance CY helps as well
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Noise Sensitivity
Dynamic gates are very sensitive to noise
– Inputs: VIH ≈ Vtn

– Outputs: floating output susceptible noise
Noise sources
– Capacitive crosstalk
– Charge sharing
– Power supply noise
– Feedthrough noise
– And more!
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Power
Domino gates have high activity factors
– Output evaluates and precharges

• If output probability = 0.5, α = 0.5
– Output rises and falls on half the cycles

– Clocked transistors have α = 1
Leads to very high power consumption
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Domino Summary
Domino logic is attractive for high-speed circuits
– 1.3 – 2x faster than static CMOS
– But many challenges:

• Monotonicity, leakage, charge sharing, noise
Widely used in high-performance microprocessors in 
1990s when speed was king
Largely displaced by static CMOS now that power is 
the limiter
Still used in memories for area efficiency
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Pass Transistor Circuits
Use pass transistors like switches to do logic
Inputs drive diffusion terminals as well as gates

CMOS + Transmission Gates:
– 2-input multiplexer
– Gates should be restoring
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LEAP
LEAn integration with Pass transistors
Get rid of pMOS transistors
– Use weak pMOS feedback to pull fully high
– Ratio constraint
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CPL
Complementary Pass-transistor Logic
– Dual-rail form of pass transistor logic
– Avoids need for ratioed feedback
– Optional cross-coupling for rail-to-rail swing
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Pass Transistor Summary
Researchers investigated pass transistor logic for 
general purpose applications in the 1990’s
– Benefits over static CMOS were small or negative
– No longer generally used

However, pass transistors still have a niche in 
special circuits such as memories where they offer 
small size and the threshold drops can be managed


